Communication
ChemComm
À
HCO3 ions or CO2 (eqn (1) and (2)) can be concentrated near Seamless Technology Transfer Program through Target-driven
+
the FTO surface through the hydrogen bonds with NH4 ions. R&D, JSPS KAKENHI Grant-in-Aid for Scientific Research (C) no.
The subsequent electrochemical H+-coupled electron transfer and 18K05280 and 20K05674, the Futaba Foundation, and the
to CO2 yields CO and H2O (eqn (9)).
GC anode:
Nippon Sheet Glass Foundation for Materials Science and
Engineering.
2H2O - O2 + 4H+ + 4eÀ
(5)
FTO cathode:
Conflicts of interest
SnO2+ 4H+ + 4eÀ - Sn/FTO + 2H2O
Sn/FTO + H+ + eÀ - Sn-H/FTO
2Sn-H/FTO - H2 + 2Sn/FTO
(6)
(7)
(8)
There are no conflicts to declare.
Notes and references
CO2Á Á ÁNH4 + Sn-H/FTO + eÀ - CO + H2O + NH3 + Sn/FTO
+
1 S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, ACS Nano,
2010, 4, 1259–1278.
2 Y. J. Sa, C. W. Lee, S. Y. Lee, J. Na, U. Lee and Y. J. Hwang, Chem. Soc.
Rev., 2020, 49, 6632–6665.
3 R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming,
M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis,
T. A. Moore, C. Moser, D. G. Nocera, A. J. Nozuk, D. R. Ort,
W. W. Parson, R. C. Prince and R. T. Sayre, Science, 2011, 332, 805.
4 T. Yamamoto, D. A. Tryk, A. Fujishima and H. Ohata, Electrochim.
Acta, 2002, 47, 3327–3334.
(9)
The resulting NH3 extracts H+ from water to regenerate the
NH4+ ion. In this case, the pH of the electrolyte solution can be
maintained near neutral throughout the electrolysis by the
buffering action of HCO3 ions in the electrolyte solution
(eqn (2)). In this manner,ÀNH4 ions on FTO can promote the
À
+
´
5 S. Hernandez, M. A. Farkhondehfal, F. Sastre, M. Makkee,
adsorption of the HCO3 ion or CO2 (eqn (1) and (2)) on
the electrode surface but also work as a proton donor under
near-neutral conditions to enhance the CO2-RR to CO. This
scheme may remind one of the catalytic effects of pyridine and
derivatives on the photoelectrochemical CO2-RR to HCOOH at
the p-GaP electrode.22 However, the action mechanism of the
present NH4+ ion-promoted CO2-RR seems to be quite different
from that in the pyridine-catalyzed CO2-RR, where the reaction
via dihydropyridine has recently been proposed.23 Further
experimental and theoretical study is necessary to elucidate
the detailed action mechanism.
In summary, this study has shown that a drastic promotion
of the electrochemical production of synthetic gas from water
and CO2 on the Sn/FTO cathode is induced by the addition of
NH4+ ions in the electrolyte solution. In this system, NH4+ ionÀs
adsorbed on the FTO surface enhance the adsorption of HCO3
G. Saracco and N. Russo, Green Chem., 2017, 19, 2326–2346.
6 B. M. Tackett, J. H. Lee and J. G. Chen, Acc. Chem. Res., 2020, 53,
1535–1544.
7 D. L. T. Nguyen, Y. Kim, Y. J. Hwang and D. H Won, Carbon Energy,
2020, 2, 72–98.
8 M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager, III and A. T. Bell, J. Am.
Chem. Soc., 2016, 138, 13006–13012.
9 M. R. Singh, E. L. Clark and A. T. Bell, Phys. Chem. Chem. Phys., 2015,
17, 18924–18936.
10 R. Shitatsuchi, K. Hongo, G. Nogami and S. Ishimaru, J. Electrochem.
Soc., 1992, 139, 2544–2549.
11 Y. Chen and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 1986–1989.
12 Y. Hori, K. Kikuchi and S. Suzuki, Chem. Lett., 1985, 1695–1698.
13 S. Ikeda, T. Takagi and K. Ito, Bull. Chem. Soc. Jpn., 1987, 60,
2517–2522.
14 M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe and T. Sakata,
J. Electroanal. Chem., 1989, 260, 441–445.
¨
15 F. Koleli, T. Atilan, N. Palamut, A. M. Gizir, R. Aydin and
C. H. Hamann, J. Appl. Electrochem., 2003, 33, 447–450.
16 W. J. Dong, J. W. Lim, D. M. Hong, J. Y. Park, W. S. Cho, S. Baek,
C. J. Yoo, W. Kim and J.-L. Lee, Appl. Energy Mater., 2020, 3,
10568–10577.
ions, which can act as a reservoir for CO2 on Sn/FTO. In
+
addition, the NH4 ions are suggested to be a proton donor in 17 Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu,
J.-J. Zhu and S. Sun, J. Am. Chem. Soc., 2017, 139, 4290–4293.
18 S. Anandan and J. J. Wu, Ultrason. Sonochem., 2015, 21, 1954–1957.
19 M. Tomisaki, S. Kasahara, K. Natsui, N. Ikemiya and Y. Einaga,
a near-neutral electrolyte solution and a mediator for proton-
coupled electron transfer from the cathode to CO2. We anticipate
that this study can be a trigger for the development of the
electrochemical production of synthetic gas for CO2 conversion
to value-added chemicals.
The authors acknowledge Prof. M. Fujishima (Kindai
University), Dr T. Sento, Mr M. Shima, Mr T. Takahashi, and
Mr Y. Sumida (Nippon Shokubai Co.) for helpful discussion.
This work was financially supported by the JST Adaptable and
J. Am. Chem. Soc., 2019, 141, 7414–7420.
20 V. Busigny, P. Cartigny, P. Philippot and M. Javoy, Chem. Geol., 2003,
198, 21–31.
¨
¨
21 E.-M. Kock, M. Kogler, T. Bielz, B. Klotzer and S. Penner, J. Phys.
Chem. C, 2013, 117, 17666–17673.
22 E. E. Barton, D. M. Rampulla and A. B. Bocarsly, J. Am. Chem. Soc.,
2008, 130, 6342–6344.
23 T. P. Senftle, M. Lessio and E. A. Carter, ACS Cent. Sci., 2017, 3,
968–974.
1441 | Chem. Commun., 2021, 57, 1438À1441
This journal is The Royal Society of Chemistry 2021