86
M. Mamatha et al. / Journal of Alloys and Compounds 407 (2006) 78–86
Mg(AlH4)2 (in mixture or neat) dissociates at 150–170 ◦C
References
(2)); at a higher temperature (310–320 ◦C), MgH2 and Al
to CaH2 and Al (Scheme 2 and Eq. (5)) proceeds in two steps,
with roughly equal amounts of hydrogen released in each of
the steps (Figs. 8(a and b) and 13(b)). This leads, as proposed
by Dymova and co-workers [9], to CaAlH5 (Eqs. (4), (5)) as
[1] F. Schu¨th, B. Bogdanovic´, M. Felderhoff, Chem. Commun. (2004)
2249.
[2] L. Schlapbach, A. Zu¨ttel, Nature 414 (2001) 353.
[3] A. Zaluska, L. Zaluski, J.O. Stro¨m-Olsen, J. Alloys Compd. 307
(2000) 157.
[4] M. Fichtner, O. Fuhr, J. Alloys Compd. 345 (2002) 286.
[5] M. Fichtner, O. Fuhr, O. Kircher, J. Alloys Compd. 356–357 (2003)
[6] M. Fichtner, J. Engel, O. Fuhr, A. Glo¨ss, O. Rubner, R. Ahlrichs,
Inorg. Chem. 42 (2003) 7060.
On the other hand, the two-step dissociation of
LiMg(AlH4)3 to LiH, MgH2, Al and hydrogen (Scheme 3)
takes place presumably via LiMgAlH6 as an intermediate
(Eqs. (10) and (11)), resulting in the observed (Fig. 11) 2:1
ratio of hydrogen liberated in the two consecutive steps.
CaCl2 with NaAlH4 in the presence of Ti catalysts (Ti*
or TiCl3) only the respective thermal dissociation products
of alanates (Schemes 1–3) are obtained. Release of hydro-
gen during ball milling [16] could be experimentally proven
(Figs. 3(c) and 8(c)). These results suggest that a Ti-catalyzed
dissociation, resp. a Ti-catalyzed hydrogen release of the
investigated alanates takes place.
Thermodynamic properties of the alanates in question
were assessed by means of DSC measurements. Accordingly,
the dissociation of Mg(AlH4)2 to MgH2, Al and hydrogen
is accompanied by a heat uptake of (only) ∼1.7 kJ/mol.
The thermodynamic stability of Mg(AlH4)2 is thus far
below that suitable for the reversible hydrogen storage
(15–24 kJ molH−1 [2]).
[7] T.N. Dymova, V.N. Konoplev, A.S. Sizareva, D.P. Aleksandrov, Dok-
lady Chem. 359 (1998) 200.
[8] T.N. Dymova, V.N. Konoplev, A.S. Sizareva, D.P. Aleksandrov, N.T.
Kuznetsov, Russ. J. Coord. Chem. 26 (2000) 531.
[9] N.N. Mal’tseva, A.I. Golovanova, T.N. Dymova, D.P. Aleksandrov,
Russ. J. Inorg. Chem. 46 (2001) 1793.
[10] T.N. Dymova, N.N. Mal’tseva, V.N. Konoplev, A.I. Golovanova, D.P.
Aleksandrov, Russ. J. Coord. Chem. 29 (2003) 385.
[11] Q.-A. Zhang, Y. Nakamura, K. Oikawa, T. Kamiyama, E. Akiba,
Inorg. Chem. 41 (2002) 6941.
[12] Q.-A. Zhang, Y. Nakamura, K. Oikawa, T. Kamiyama, E. Akiba,
Inorg. Chem. 41 (2002) 6547.
[13] B. Bogdanovic´, R.A. Brand, A. Marjanovic´, M. Schwickardi, J.
To¨lle, J. Alloys Compd. 302 (2000) 36.
[14] R. Franke, J. Rothe, J. Pollman, J. Hormes, H. Bo¨nnemann, W.
Brijoux, T. Hindenburg, J. Am. Chem. Soc. 118 (1996) 12090.
[15] B. Bogdanovic´, M. Felderhoff, S. Kaskel, A. Pommerin, K.
Schlichte, F. Schu¨th, Adv. Mater. 15 (2003) 12.
[16] J.M. Bellosta von Colbe, B. Bogdanovic´, M. Felderhoff, A. Pom-
merin, F. Schu¨th, J. Alloys Compd. 370 (2004) 104.
[17] T.N. Dymova, M. Mukhidinov, N.G. Eliseeva, Zh. Neorg. Khim. 15
(1970) 2318 (C.A. 73, 126510s).
[18] B.M. Bulychev, K.N. Semenenko, K.B. Bitcoev, Koord. Khim. 4
(1978) 374 (PDF-2 data base number 34-926).
[19] E. Wiberg, Angew. Chem. 65 (1953) 24.
With respect to the dissociation of the first two steps of
calcium and lithium–magnesium alanates, in both cases the
DSC measurements (Fig. 13(b and c)) proved the first step
to be weakly exothermic and the second to be endothermic.
Determination of ꢀH values for the second, endothermic
step of calcium and lithium–magnesium alanate dissocia-
tion gave values of ∼31.6 and ∼13.1 kJ/mol, respectively.
Based on the found dissociation enthalpy of 31.6 kJ/mol for
the dissociation of CaAlH5 (Eq. (5)), an attempt was made to
calculate the dissociation pressure using van’t Hoff isochore
[20] J. Plesˇek, S. Heˇrma´nek, Collect. Czech. Chem. Commun. 31 (1966)
3060.
[21] E.C. Ashby, R.D. Schwartz, B.M. James, Inorg. Chem. 9 (1970)
325.
[22] M. Fichtner, O. Fuhr, O. Kircher, J. Rothe, Nanotechnology 14
(2003) 778.
[23] P. Claudy, B. Bonnetot, J.M. Letoffe´, J. Therm. Anal. 15 (1979)
119.
[24] W. Schwab, K. Wintersberger, Z. Naturforsch. B 8 (1953) 690.
[25] A.E. Finholt, G.D. Barbaras, G.K. Barbaras, G. Urry, Th. Wartik,
H.I. Schlesinger, J. Inorg. Nucl. Chem. 1 (1955) 317.
[26] E.C. Ashby, Adv. Inorg. Chem. Radiochem. 8 (1966) 327.
[27] S. Cucinella, G. Dozzi, A. Mazzei, J. Organometal. Chem. 63 (1973)
17.
[28] W.P. Balema, J.W. Wiench, K.W.M. Dennis, M. Pruski, V.K.
Pecharsky, J. Alloys Compd. 329 (2001) 108.
[29] H. Morioka, K. Kakizaki, S.-C. Chung, A. Yamada, J. Alloys Compd.
353 (2003) 310.
(in pH = −ꢀS/R + ꢀH/RT [34]), which corresponds to
2
a dissociation pressure at 20 ◦C of 8.4 bar (1 bar at −21 ◦C)
and at 60 ◦C of 40.0 bar. Further work will concentrate on
the possible reversible properties of CaAlH5 for hydrogen
storage.
[30] A.R. West, Basic Solid-State Chemistry, J. Wiley, Chichester,
1991.
[31] D. Handson, M.L.V. Gayler, Engineering 110 (1920) 788/819.
[32] M.H. Mintz, Z. Gavra, G. Kimmel, Z. Hadari, J. Less Common Met.
74 (1980) 263.
[33] Z. Gavra, Z. Hadari, M.H. Mintz, J. Inorg. Nucl. Chem. 43 (1981)
1763.
Acknowledgements
This work was partially supported by General Motors Fuel
Cell Activities, in addition to the basic funding by the Max
Planck Gesellschaft. We thank B. Zibrowius for discussion
of NMR measurements.
[34] H. Buchner, Energiespeicherung in Metallhydriden, Springer-Verlag,
Wien, NY, 1982.