T.Q. Nguyen et al. / Materials Research Bulletin 46 (2011) 2199–2203
2203
Fig. 9. Scanning electron microscopic images of obtained particles after calcination at (a) 1100 8C and (b) 1200 8C.
[
2] Y.K. Park, E.H. Tadd, M. Zubris, R. Tannenbaum, Mater. Res. Bull. 40 (2005) 1506–
512.
3] A.I.Y. Tok, F.Y.C. Boey, X.L. Zhao, J. Mater. Process. Technol. 178 (2006) 270–273.
4
. Conclusion
1
[
A solid particulate precursor for
through a thermal decomposition of ATI vapor at 170–250 8C with
HCl as a catalyst. The decomposition was nearly complete at 250 8C
with the molar ratio of HCl to ATI at 0.1.
5 nm in surface area equivalent diameter, were obtained by
calcining the precursor at 1200 8C for 2 h. The ignition loss of the
precursor was 24%, considerably lower than that of Al(OH) , a
conventional alumina precursor. The obtained -alumina exhib-
ited a worm-like structure due to sintering between neighboring
particles. The unique structure of these -alumina particles may
a
-alumina was prepared
[4] H. Maki, Y. Takeuchi, US Patent 7,351,394 B2 (2008).
[5] A. Majhi, G. Pugazhenthi, A. Shukla, Ind. Eng. Chem. Res. 49 (2010) 4710–4719.
[6] Y. Mathieu, L. Vidal, V. Valtchev, B. Lebeau, New J. Chem. 33 (2009) 2255–2260.
[7] C.H. Lim, S. Santra, S. Sahu, A. Aziz, P. Pramanik, Int. J. Nanotechnol. 7 (2010) 1003–
1012.
a-Alumina particles,
7
[8] E. Borsella, S. Botti, R. Giorgi, S. Martelli, S. Turtu, G. Zappa, Appl. Phys. Lett. 63
1993) 1345–1347.
9] P. Moravec, J. Smolik, V.V. Levdansky, J. Mater. Sci. Lett. 20 (2001) 311–313.
(
[
3
[10] Y.S. Yoo, K.Y. Park, K.Y. Jung, S.B. Cho, Mater. Lett. 63 (2009) 1844–1846.
[11] D.C. Cameron, L.D. Irving, G.R. Jones, J. Woodward, Thin Solid Films 91 (1982)
a
3
39–348.
12] A.N. Gleizes, C. Vahlas, M.M. Sovar, D. Samelor, M.C. Lafont, Chem. Vap. Deposition
3 (2007) 23–29.
[
a
1
suggest their application as raw materials for ceramic filters,
catalyst supports for high temperature reactions, reinforcing fillers
for polymers, and fine abrasives.
[13] O. Mekasuwandumrong, P.L. Silveston, P. Praserthdam, M. Inoue, V. Pavarajarn, V.
Tanakulrungsank, Inorg. Chem. Commun. 6 (2003) 930–934.
[14] C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel
Processing, Academic Press, New York, 1990.
[15] J.A. Snyder, R.A. Cazar, A.J. Jamka, F.M. Tao, J. Phys. Chem. A 103 (1999) 7719–
7
724.
Acknowledgement
[
[
[
16] Y. Suyama, A. Kato, J. Am. Ceram. Soc. 59 (1976) 146–149.
17] H.D.H.D. Jang, J. Jeong, Aerosol Sci. Technol. 23 (1995) 553–560.
18] M. Formenti, F. Juillet, P. Meriaudeau, S.J. Teichner, P. Vergnon, in: G.M. Hidy (Ed.),
Aerosols and Atmospheric Chemistry, Academic Press, New York, 1972.
19] M.K. Akhtar, Y. Xiong, S.E. Pratsinis, AIChE J. 37 (1991) 1561–1570.
This research was supported by a grant from the Fundamental
R&D Program for Core Technology of Materials funded by the
Ministry of Knowledge Economy, Republic of Korea.
[
[20] Y.C. Lu, R.R. Dieckmann, S.L. Sass, Acta Metall. Mater. 42 (1994) 1125–1137.
[21] M. Schmid, M. Shishkin, G. Kresse, E. Napetschnig, P. Varga, M. Kulawik, N. Nilius,
H.P. Rust, H.J. Freund, Phys. Rev. Lett. 97 (2006) 046101.
22] K.M.S. Khalil, Appl. Surf. Sci. 255 (2008) 2874–2878.
References
[
[23] J. Chandradass, M. Balasubramanian, Ceram. Int. 31 (2005) (2005) 743–748.
[
1] R.J. Yang, F.S. Yen, S.M. Lin, C.C. Chen, J. Cryst. Growth 299 (2007) 429–435.
[24] S. Wang, X. Li, S. Wang, Y. Li, Y. Zhai, Mater. Lett. 62 (2008) 3552–3554.