Fig. 10 Water vapour isotherms for 1 and 2 measured at 25 °C. Blue
triangles for the NH2-functionalized compound 2, red squares for 1.
Empty symbols represent the desorption-, filled symbols represent the
adsorption-branch.
Fig. 9 N2-Sorption isotherms for 1, 2 and 3 measured at 77 K.
Table 2 Apparent specific surface areas and Vmic values of the
CAU-3-MOFs
Acknowledgements
Compound
ABET m2 g−1
ALangmuir m2 g−1
Vmic cm3 g−1
This work has been financially supported by the DFG (SPP
1362). The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007–20013) under grant agreement n° 228862′.
CAU-3-BDC
CAU-3-BDC-NH2
CAU-3-NDC
1550
1250
2320
1920
1520
2750
0.64
0.53
0.95
Notes and references
while the enlargement of the linker molecule results in a drasti-
cally increased uptake. The BET-surfaces as well as the micro-
pore volumes are summarized in Table 2.
1 G. Ferey, Chem. Soc. Rev., 2008, 37, 191.
2 Z. Wang and S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1315.
3 S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43,
2334.
The apparent specific surface areas and the micropore volume
measured for CAU-3-NDC 3 are to the best of our knowledge
the highest reported so far for any literature known Al-MOF.
Changing the adsorbate from N2 to H2O, the influence of the
functional group is clearly visible (Fig. 10). The use of H2O
vapour leads to strong hysteresis. The absolute amount of
adsorbed water is similar for both CAU-3-BDC and CAU-3-
BDC-NH2, but due to the presence of the polar amino group, the
adsorbed amount of water vapour at lower partial pressures is
higher in CAU-3-NH2.
4 C. Janiak, Dalton Trans., 2003, 2781.
5 R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213.
6 O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and
J. Kim, Nature, 2003, 423, 705.
7 T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin,
D. Heurtaux, G. Clet, A. Vimont, J.-M. Greneche, B. Le Ouay,
F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.-C. Lavalley, M. Daturi
and G. Ferey, J. Am. Chem. Soc., 2010, 132, 1127.
8 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and
O. M. Yaghi, Science, 2002, 295, 469.
9 C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk and
G. Férey, Science, 2007, 315, 1828.
Although this is a purely qualitative sorption study, the
influence of the amino group with its ability for hydrogen
bonding is obvious.
10 J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga
and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850.
11 A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke and
P. Behrens, Chem.–Eur. J., 2011, 17, 6643.
12 M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K. P. Lillerud and
M. Tilset, J. Mater. Chem., 2010, 20, 9848.
13 S. Bauer, C. Serre, T. Devic, P. Horcajada, J. Marrot, G. Férey and
N. Stock, Inorg. Chem., 2008, 47, 7568.
Conclusion
Summarizing our results, we have synthesized three new Al-
containing MOFs by applying our high-throughput-methods and
characterized them in detail. This new family of MOFs contains
an unprecedented brick, [Al12(OCH3)24]12+, which is twelvefold
connected by dicarboxylate molecules to form a fcu-net. This
inorganic unit is the second example for the occurrence of a
wheel-shaped aluminium cluster in a metal–organic framework.
All three compounds of the CAU-3-family are highly porous and
exhibit BET-surface areas larger than 1200 m2 g−1 and micro-
pore volumes higher than 0.5 cm3 g−1. They are thermally stable
up to at least 180 °C in air. The sorption properties are altered
upon incorporation of a functional group or a larger linker mol-
ecule, respectively.
14 P. Maniam and N. Stock, Inorg. Chem., 2011, 50, 5085.
15 T. Ahnfeldt, D. Gunzelmann, T. Loiseau, D. Hirsemann, G. Férey,
J. Senker and N. Stock, Inorg. Chem., 2009, 48, 3057.
16 A. Sonnauer, F. Hoffmann, M. Fröba, L. Kienle, V. Duppel,
M. Thommes, C. Serre, G. Férey and N. Stock, Angew. Chem., Int. Ed.,
2009, 48, 3791.
17 C. Volkringer, D. Popov, T. Loiseau, G. Férey, M. Burghammer,
C. Riekel, M. Haouas and F. Taulelle, Chem. Mater., 2009, 21, 5695.
18 C. Volkringer, D. Popov, T. Loiseau, N. Guillou, G. Ferey, M. Hauuas,
F. Taulelle, C. Mellot-Draznieks, M. Burghammer and C. Riekel, Nat.
Mater., 2007, 6, 760.
19 C. Volkringer, T. Loiseau, N. Guillou, G. Ferey, M. Haouas, F. Taulelle,
N. Audebrand, I. Margiolaki, D. Popov, M. Burghammer and C. Riekel,
Cryst. Growth Des., 2009, 9, 2927.
20 C. Volkringer, T. Loiseau, M. Haouas, F. Taulelle, D. Popov,
M. Burghammer, C. Riekel, C. Zlotea, F. Cuevas, M. Latroche,
4170 | Dalton Trans., 2012, 41, 4164–4171
This journal is © The Royal Society of Chemistry 2012