72
Russ.Chem.Bull., Int.Ed., Vol. 50, No. 1, January, 2001
Asnin et al.
Optimization in Chemistry and Chemical Technology], Vyssh.
shkola, Moscow, 1978, p. 31 (in Russian).
8. A. A. Lopatkin, Teoreticheskie osnovy fizicheskoi adsorbtsii
[Theoretical Foundations of Physical Adsorption], Izd-vo
MGU, Moscow, 1983, 344 pp. (in Russian).
9. G. W. Reklaitis, A. Ravindran, K. M. Ragsdell, Engineering
Optimization. Methods and Applications, J. Wiley and Sons,
New YorkLondonSydneyToronto, 1983.
10. Kratkii spravochnik fiziko-khimicheskikh velichin [Brief Hand-
book on Physicochemical Values], Eds. K. P. Mishchenko
and A. A. Ravdel´, Khimiya, Leningrad, 1967, 182 pp. (in
Russian).
11. A. A. Lopatkin and N. K. Shoniya, Zh. Fiz. Khim., 1999, 73,
1769 [Russ. J. Phys. Chem., 1999, 73 (Engl. Transl.)].
12. T. A. Rudnitskaya and A. A. Lopatkin, Zh. Fiz. Khim., 1997,
71, 535 [Russ. J. Phys. Chem., 1997, 71 (Engl. Transl.)].
13. L. D. Asnin, A. A. Fedorov, and Yu. S. Chekryshkin, Izv.
Akad. Nauk, Ser. Khim., 2000, 178 [Russ. Chem. Bull., Int.
Ed., 2000, 49, 175].
surface are bound to the adsorbent more strongly than
molecules adsorbed at greater coverages.
At T = 439 K, the decrease in the loss of molecular
mobility of benzene with an increase in the surface
coverage is more pronounced than that in the case of
CB. This implies that various types of fixation on the
surface are available for benzene. Conversely, in the case
of CB, as the very active sites are occupied, the adsor-
bate molecules acquire approximately equal opportuni-
ties for fixing on the surface. Evidently, adsorbed ben-
zene is more sensitive to the inhomogeneity of the
alumina surface than chlorobenzene.
The authors are grateful to N. E. Skryabina (Perm
State University) and R. M. Yakushev for assistance in
X-ray diffraction measurements and determination of
the specific surface area.
14. M. Nagao and Y. Suda, Langmuir, 1989, 5, 42.
15. M. Nagao and K. Matsuoka, J. Chem. Soc., Faraday Trans.
1, 1988, 84, 1277.
References
16. Kratkii spravochnik po khimii [Brief Handbook on Chemistry],
Nauk. dumka, Kiev, 1965, 836 pp. (in Russian).
17. A. A. Lopatkin and R. S. Petrova, Zh. Fiz. Khim., 1994, 68,
675 [Russ. J. Phys. Chem., 1994, 68 (Engl. Transl.)].
18. A. A. Lopatkin, Ros. Khim. Zhurn. [Russ. Chem. J.], 1998,
91 (in Russian).
1. A. A. Fedorov, Yu. S. Chekryshkin, and N. G. Shadrina,
Zh. Prikl. Khim., 1998, 71, 1828 [Russ. J. Appl. Chem., 1998,
71 (Engl. Transl.)].
2. P. E. Eberly, J. Phys. Chem., 1961, 65, 68.
3. A. A. Kubasov, I. V. Smirnova, and K. V. Topchieva, Kinet.
Katal., 1964, 5, 520 [Kinet. Catal., 1964, 5 (Engl. Transl.)].
4. E. Cremer and H. Huber, Angew. Chem., 1961, 73, 461.
5. B. C. Lippens and J. J. Steggerda, Physical and Chemical
Aspects of Adsorbents and Catalysts, Ed. B. G. Linsen, Aca-
demic Press, LondonNew York, 1970, p. 171.
6. A. V. Kiselev and Ya. I. Yashin, Gazo-adsorbtsionnaya
khromatografiya [Gas Solid Chromatography], Nauka, Mos-
cow, 1967, 256 pp. (in Russian).
19. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and
Porosity, Academic Press, LondonNew York, 1982.
20. D. R. Stull, E. F. Westrum, and G. C. Sinke, The Chemical
Thermodynamics of Organic Compounds, J. Wiley and Sons,
New YorkLondonSydneyToronto, 1969.
21. A. A. Lopatkin, Zh. Fiz. Khim., 1997, 71, 916 [Russ. J. Phys.
Chem., 1997, 71 (Engl. Transl.)].
7. S. L. Akhnazarova and V. V. Kafarov, Optimizatsiya
eksperimenta v khimii i khimicheskoi tekhnologii [Experiment
Received February 18, 2000;
in revised form July 6, 2000