SUPPORTED Ru−Ni CATALYSTS FOR BIOGAS
513
2. Garcia, J.L., Patel, B.K.C., and Ollivier B., Anaerobe,
dispersion of nickel was observed in the case of the
Ru–Ni/CaO–Al2O catalyst.
2000, vol. 6, p. 205.
3. Thauer, R.K., Jungermann, K., and Decker, K., Bacte-
riol. Rev., 1977, vol. 41, p. 100.
Table 1 shows the results of the catalytic activity
tests performed for the investigated catalysts in mixed
reforming of methane process expressed as methane
and carbon dioxide conversions. The catalytic activity
studies show that the higher temperature of reaction
leads to a higher conversion of methane and carbon
dioxide. Monometallic catalysts have a similar catalytic
activity at 700°C. The catalytic measurements showed
also that only bimetallic Ru-Ni/MgO–Al2O3 sup-
ported catalysts exhibited high values of methane and
carbon dioxide conversions.
4. Sieber, J.R., McInerney, M.J., and Gunsalus, R.P.,
Annual Rev. Microbiol., 2012, vol. 66, p. 429.
5. Chojnacka, A., Szczęsny, P., Błaszczyk, M.K., Zielen-
kiewicz, U., Detman, A., Salamon, A., and Sikora, A.,
PLOS ONE, 2015, vol. 10, no. 5, p. e0128008.
6. Lee, S.-H., Park, J.-H., Kim, S.-H., Yu, B.J., Yoon, J.-J.,
and Park, H.-D., Bioresour. Technol., 2015, vol. 190,
p. 543.
7. Kvesitadze, G., Sadunishvili, T., Dudauri, T.,
Zakariashvili, N., Partskhaladze, G., Ugrekhelidze, V.,
Tsiklauri, G., Metreveli, B., and Jobava, M., Energy,
2012, vol. 37, p. 94.
The promotion effect of ruthenium on nickel cata-
lyst reduction was proven by TPR-H2 method. This
can be due to the oxidation of the carbon deposits
present on the catalyst surface:
8. Park, M.J., Jo, J.H., Park, D., Lee, D.S., and Park, J.M.,
Int. J. Hydrogen Energy, 2010, vol. 35, no. 12, p. 6194.
С + СO2 = 2CO.
9. Guwy, A.J., Dinsdale, R.M., and Kim, J.R., Bioresour.
Technol., 2011, vol. 102, no. 18, p. 8534.
On the other hand, when the mixed methane
reforming process is carried out at 900°С, almost all
studied catalysts, independently of their composition,
show similar values of CO2 and CH4 conversions.
These results are related to the limitation of the rate of
deposit formation process at higher temperatures.
10. Detman, A., Chojnacka, A., Błaszczyk, M.,
Kaźmierczak, W., Piotrowski, J., and Sikora, A., Pol. J.
Environ. Stud., 2017, vol. 26, no. 3, p. 1023.
11. Crisafulli, C., Scirè, S., Maggiore, R., Minicò, S., and
Galvagno, S., Catal. Lett., 1999, vol. 59, p. 21
12. Luisetto, I., Sarno, C., Felicisc, D., Basoli, F., Battoc-
chio, C., Tuti, S., Licoccia, S., and Di Bartolomeo, E.,
Fuel Proces. Technol., 2017, vol. 158, p. 130.
It is notable, that the promoting effect of ruthe-
nium was confirmed only for a bimetallic catalyst sup-
ported on the MgO–Al2O3 support. This can be
explained by the higher dispersion of nickel on MgO–
Al2O3 compared to other supporting materials.
13. Takehira, K., Ohi, T., Miyata, T., Shiraga, M., and
Sano, T., Top. Catal., 2007, vol. 42–43, p. 471.
14. Rostrup-Nielsen, J.R., Catal. Sci. Technol., 1984,
vol. 5, p. 106.
15. Tracz, E., Scholz, R., and Borowiecki, T., Appl. Catal.,
CONCLUSIONS
1990, vol. 66, p. 133.
In this work we propose an efficient method for
biomethane and biohydrogen conversion to syngas.
The promotion effect of ruthenium on nickel catalyst
reduction was proven by TPR-H2 method. Catalytic
activity tests showed that the highest methane and car-
bon dioxide conversion were obtained for the Ru–
Ni/MgO–Al2O3 bimetallic catalysts. This is likely to
be due to the uniform distribution on nickel of the sup-
port surface of the catalyst.
16. Alstrup, I., Clausen, B., Olsen, C., Smits, R., and Ros-
trup-Nielsen, J.R., Stud. Surf. Sci. Catal., 1998,
vol. 119, p. 5.
17. Hansen, J.B., and Nielsen, P.E.H., Methanol synthe-
sis, in Handbook of Heterogenous Catalysis, 2nd ed.,
2008, vol. 6, p. 2920.
18. Borowiecki, T. and Ryczkowski, J., Focus Catal. Res.,
2006, ch. 5, p. 101.
19. Rostrup-Nielsen, J.R., J. Catal., 1984, vol. 85, p. 31.
20. Mierczynski, P., Vasilev, K., Mierczynska, A., Mani-
ukiewicz, W., Szynkowskaa, M.I., and Maniecki, T.P.,
Appl. Catal., B, 2016, vol. 185, p. 281.
ACKNOWLEDGMENTS
This work was supported under the project BIO-
STRATEG2/297310/13/NCBiR/2016.
21. Mierczynski, P., Maniukiewicz, W., and Maniecki, T.P.,
Cent. Eur. J. Chem., 2013, vol. 11, no. 6, p. 912.
22. Charisiou, N.D., Baklavaridis, A., Papadakis, V.G.,
and Goula, M.A., Waste Biomass Valorization, 2016,
vol. 7, p. 725.
REFERENCES
1. Boone, D.R., Whitman, W.B., and Rouvière, P., Meth-
anogenesis, Chapman and Hall, ed. Ferry J.G., Ed.,
London, 1993, p. 35.
KINETICS AND CATALYSIS Vol. 59 No. 4 2018