P. Alphonse, M. Courty / Thermochimica Acta 425 (2005) 75–89
89
[
3] K. Wefers, G.M. Bell, Oxides and Hydroxides of Aluminium Alcoa
Technical Paper, No. 19, Alcoa Laboratories, 1987.
search and Testing (BAM), Berlin, Germany http://users.omskreg.
ru/∼kolosov/bam/a v/v 1/powder/e cell.htm).
[
4] R.B. Bagwell, G.L. Messing, Critical factors in the production of
sol–gel derived porous alumina, in: D.-M. Liu (Ed.), Porous Ceramic
Materials, Key Eng. Mater. 115 (1996) 45–64.
[27] G. Caglioti, A. Paoletti, F.P. Ricci, Nucl. Instr. 3 (1958) 223–
228.
[28] A.F. Carley, P.H. Morgan, Computational methods in the chemical
sciences, Ellis Horwood, 1989 (for Heun’s method, p. 168, for Sim-
plex algorithm, p. 269).
[29] IBM Chemical Kinetics Simulator (CKS) program https://www.
almaden.ibm.com/st/computational science/ck/msim/?cks.
[30] F.A. Houle, W.D. Hinsberg, Surf. Sci. (1995) 338.
[31] B.C. Lippens, Structure and Texture of Aluminas, Thesis, Delft
(1961).
[
[
[
5] R.T. Tettenhorst, D.A. Hofmann, Clays Clay Miner. 28 (1980)
3
73–380.
6] R.T. Tettenhorst, C.E. Corbato, Clays Clay Miner. 36 (1988)
81–183.
7] M. Bellotto, B. Rebours, P. Euzen, Proceedings of the Fifth European
Powder Diffraction Conference 1997, Material Science Forum, 1998,
pp. 572–577.
1
[
8] X. Bokhimi, J.A. Toledo-Antonio, M.L. Guzman-Castillo, F.
Hernandez-Beltran, J. Solid State Chem. 159 (2001) 32–40.
9] A.E. Gobichon, B. Rebours, P. Euzen, Mater. Sci. Forum 378–381
[32] D. Papee, R. Tertian, R. Biais, Bull. Soc. Chim. Fr. (1958)
1301–1310.
[33] B.R. Baker, R.M. Pearson, J. Catal. 33 (1974) 265–278.
[34] R.C. Reynolds Jr., Acta Crystallogr. A24 (1968) 319–320.
[35] W.O. Milligan, H.B. Weiser, J. Phys. Colloid Chem. 55 (1951)
490–496.
[
(2001) 523–528.
[
[
10] S.J. Wilson, J. Solid State Chem. 30 (1979) 247–255.
11] C. Simon, R. Bredesen, H. Grondal, A.G. Hustoft, E. Tangstad, J.
Mater. Sci. 30 (1995) 5554–5560.
[36] J. Campaniello, P. Berthet, F. D’Yvoire, A. Revcolevschi, J. Mater.
Res. 10 (2) (1995) 297–301.
[
12] T. Tsukada, H. Segawa, A. Yasumori, K. Okada, J. Mater. Chem. 9
(
1999) 549–553.
[37] A.F. Popa, S. Rossignol, C. Kappenstein, J. Non-Cryst. Solids 306
(2002) 169–174.
[38] G.G. Christoph, C.E. Corbato, D.A. Hofmann, R.T. Tettenhorst,
Clays Clay Miner. 27 (1979) 81–86.
[
13] M.L. Guzman-Castillo, X. Bokhimi, A. Toledo-Antonio, J.
Salmones-Blasquez, F. Hernandez-Beltran, J. Phys. Chem., B 105
(2001) 2099–2106.
[14] X. Bokhimi, J.A. Toledo-Antonio, M.L. Guzman-Castillo, B. Mar-
Mar, F. Hernandez-Beltran, J. Navarrete, J. Solid State Chem. 161
[39] C.T. Wang Shan-Li, D.L. Johnston, J.L. Bish, S.L. Hem White, J.
Colloid Interface Sci. 260 (2003) 26–35.
(
2001) 319–326.
[40] P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen, H. Toulhoat,
J. Catal. 201 (2001) 236–246.
[41] J.A. Wang, X. Bokhimi, A. Morales, O. Novaro, T. Lopez, R. Gomez,
J. Phys. Chem., B 103 (1999) 299–303.
[42] J. Rouquerol, F. Rouquerol, M. Ganteaume, J. Catal. 36 (1975)
99–110.
[43] L.A. Perez-Maqueda, J.M. Criado, C. Real, J. Subrt, J. Bohacek, J.
Mater. Chem. 9 (1999) 1839–1845.
[44] G.S. Chopra, C. Real, M.D. Alcala, L.A. Perez-Maqueda, J. Subrt,
J.M. Criado, Chem. Mater. 11 (1999) 1128–1137.
[45] S. Vyazovkin, C.A. Wight, Int. Rev. Phys. Chem. 17 (1998) 407–
433.
[
15] M. Nguefack, A.F. Popa, S. Rossignol, C. Kappenstein, Phys. Chem.
Chem. Phys. 19 (2003) 4279–4289.
16] C. Eyraud, R. Goton, J. Chim. Phys. 51 (1954) 430–433.
17] W.D. Callister Jr., I.B. Cutler, R.S. Gordon, J. Am. Ceram. Soc. 49
[
[
(
1966) 419–422.
18] L. Abrams, M.J.D. Low, Ind. Eng. Chem. Prod. Res. 8 (1969) 38–
8.
19] E. Buzagh-Gere, J. Simon, S. Gal, Fresenius Z. Anal. Chem. 264
1973) 392–396.
20] T. Tsuchida, R. Furuich, T. Ishii, Thermochim. Acta 39 (1980)
03–115.
[
[
[
4
(
1
[
[
[
[
[
[
21] M.H. Stacey, Langmuir 3 (1987) 681–686.
[46] C.D. Doyle, J. Polym. Appl. Sci. VI 24 (1962) 639–642.
[47] J.H. Flynn, J. Ther. Anal. 27 (1983) 95–102.
[48] S. Vyazovkin, W. Linert, Int. J. Chem. Kinet. 27 (1995) 73–84.
[49] L.J. Michot, F. Villieras, M. Fran c¸ ois, I. Bihannic, M. Pelletier, J.-M.
Cases, C. R. Geosci. 334 (2002) 611–631.
22] B.E. Yoldas, J. Mater. Sci. 10 (1975) 1856–1860.
23] B.E. Yoldas, Am. Ceram. Soc. Bull. 54 (1975) 286–288.
24] B.E. Yoldas, Am. Ceram. Soc. Bull. 54 (1975) 289–290.
25] B.E. Yoldas, US Patent, 3,941,719 (1976).
26] W. Kraus, G. Nolze, J. Appl. Crystallogr. 29, 1996. 301-303
[50] J.M. McHale, A. Auroux, A.J. Perrota, A. Navrotsky, Science 277
(1997) 788–791.
(PowderCell for Windows, Federal Institute for Materials Re-