428
KANTSEROVA, ORLIK
5. Rodionov, Yu.M., Slyusarenko, E.M., and Lunin, V.V.,
Thus, we found that the nature of the support and the
Usp. Khim., 1996, vol. 65, no. 9, p. 865.
procedures used for the preparation of both the support
and the catalyst affected the activity of cobalt–zirco-
nium nanosystems. We prepared low-temperature cata-
lysts for deep methane oxidation under conditions
developed for the formation of the nanosized phases of
6. Stinson, S.C., Chem. Eng. News, 1982, vol. 60, no. 32,
p. 26.
7. Villa, R., Cristiani, C., and Groppi, G., J. Mol. Catal. A,
2003, vol. 204, p. 637.
8. Sitidze, Yu. and Sato, Kh., Ferrity (Ferrites), Moscow:
a support (LZrO = 12–13 nm) and an active component
2
Mir, 1964.
(LCo O ≤ 3 nm). In terms of activity, these catalysts are
9. Ivanova, A.S., Fedotov, M.A, and Litvak, G.S., Kinet.
Katal., 2002, vol. 43, no. 1, p. 150 [Kinet. Catal. (Engl.
Transl.), vol. 43, no. 1, p. 139].
10. Ukrainian Patent 71394 A, 2004.
11. Ukrainian Patent 2001075296, 2002.
12. Kharlanov, A.N., Lunina, E.V., and Lunin, V.V., Zh. Fiz.
Khim., 1999, vol. 73, no. 5, p. 898 [Russ. J. Phys. Chem.
(Engl. Transl.), vol. 73, no. 5, p. 790].
13. Labaki, M., Lamonier, J.-F, Siffert, S., Zhilinskaua, E.A.,
and Aboukais, A., Tezisy dokladov VI Rossiiskoi konfer-
entsii po mekhanizmam kataliticheskikh reaktsii (Proc.
VI Russian Conf. on Mechanisms of Catalytic Reac-
tions), Moscow, 2002, p. 51.
14. Choudhary, V.R., Banerjee, S., and Uphade, B.S., Appl.
Catal., A, 2000, vol. 197, no. 2, P. L183.
15. Mironyuk, T.V., Orlik, S.N., and Struzhko, V.L., Teor.
Eksp. Khim., 2001, vol. 37, no. 4, p. 256.
x
y
comparable with the well-known catalysts based on zir-
conium dioxide and with catalytic systems containing
noble metals [44–46]. We found the manifestation of an
internal size effect in the zirconium oxide nanosystem:
a decrease in the temperature of agglomeration with
decreasing catalyst particle size.
We found that the most active catalyst among sup-
ported ferrite and cobalt–zirconium nanosystems was
characterized by the greatest amount and the highest
reactivity of oxygen. The presence of strong acid sites
on the catalyst surface was responsible for the lower
temperature of the onset of the deep methane oxidation
reaction. This is consistent with the current concepts of
the mechanism of deep methane oxidation on oxide cat-
alysts.
The results of the study of complex oxide nanocom-
posites in deep methane oxidation suggest that the
problem of developing efficient catalysts that do not
contain noble metals can be successfully solved based
on the effect of structure–size (especially, nanosize)
factors on the activity and thermal stability of catalysts
and a relationship between the functional (redox and
acid) and catalytic properties of the above oxide com-
positions. The nanosized supported zirconia- and alu-
mina-based catalytic systems and spinel-structure
MFe2O4 nanocomposites (M = Mn, Co, or Ni) with con-
trollable structure–size characteristics, redox proper-
ties, and acid properties form the basis for the develop-
ment of commercial catalysts for the purification of
methane-containing vent gas emissions and the com-
bustion of hydrocarbon gas fuel in power plants.
16. Hammond, C., The Basics of Crystallography and Dif-
fraction, Oxford: Oxford Univ. Press, 1997, p. 145.
17. Dzis’ko, V.A., Tarasova, D.V., and Karnaukhov, A.P.,
Fiziko-khimicheskie osnovy sinteza okisnykh kataliza-
torov (Physicochemical Foundations of the Synthesis of
Oxide Catalysts), Novosibirsk: Nauka, 1978, p. 384.
18. Suzdalev, I.P. and Suzdalev, P.I., Usp. Khim., 2001,
vol. 70, no. 3, p. 203.
19. Murrell, L.L., Catal. Today, 1997, vol. 35, no. 3, p. 225.
20. Moroz, E.M., Zh. Prikl. Khim., 1996, vol. 69, no. 11,
p. 1764.
21. Stohmeir, B.R. and Hercules, D.M., J. Phys. Chem.,
1984, vol. 88, no. 21, p. 4922.
22. Uvarov, N.F. and Boldyrev, V.V., Usp. Khim., 2001,
vol. 79, no. 4, p. 307.
23. Choundary, T.V., Benerijce, S., and Choundary, V.R.,
Appl. Catal., A, 2002, vol. 234, nos. 1–2, p. 1.
24. Kapteijn, F., Langeveld, A.D., Moulijn, J.A., Andreini, A.,
Vuurman, M.A., Turek, A.M., Jehng, J.M., and Wachs,
I.E., J. Catal., 1994, vol. 150, no. 1, p. 94.
ACKNOWLEDGMENTS
This study was performed within the framework of
a project of the program “Nanostructured Systems,
Nanomaterials, and Nanotechnologies” of the National
Academy of Sciences of Ukraine.
25. Sergeev, B.G., Ross. Khim. Zh., 2002, vol. 46, no. 5,
p. 22.
26. Tsikoza, L.T., Ismagilov, Z.R., Shkrabina, R.A., Ko-
ryabkina, N.A., Ushakov, V.A., Kuznetsov, V.V., and Ov-
syannikova, I.A., Zakonomernosti glubokogo okisleniya
veshchestv na tverdykh katalizatorakh (Deep Oxidation
of Substances on Solid Catalysts), Novosibirsk: Inst.
Kataliza, 2000.
27. Artizzu, P., Garbowski, E., Primet, M., Brulle, Y., and
Saint-Just, J., Catal. Today, 1999, vol. 47, nos. 1–4,
p. 83.
REFERENCES
1. Hicks, R.F., Qi, H., Young, M.L., and Lee, R.G.,
J. Catal., 1990, vol. 122, no. 2, p. 280.
2. Briot, P., Denis, A.A., and Primet, J.M., Appl. Catal.,
1990, vol. 59, no. 1, p. 141.
3. Ukrainian Patent 2003065833, 2004.
28. Garbowski, E., Guenin, M., Marion, M.C., and Primet, M.,
Appl. Catal., 1990, vol. 64, p. 209.
4. Kosmambetova, G.R., Kantserova, M.R., Orlik, S.N.,
and Kazimirov, V.P., Teor. Eksp. Khim., 2003, vol. 39, 29. Kurina, L.N. and Vodyankin, A.Yu., Zh. Prikl. Khim.,
no. 4, p. 241.
1997, vol. 70, no. 8, p. 1389.
KINETICS AND CATALYSIS Vol. 48 No. 3 2007