Journal of the American Chemical Society
Page 6 of 7
Heterocyclic Carbene and Displaying Long-Lived Circularly Polar-
(18) Selected book chapter or review on Cu-AAA, see: (a) Baslé,
O.; Denicourt-Nowicki, A.; Crévisy, C.; Mauduit, M. Asymmetric
Allylic Alkylation in Copper-Catalyzed Asymmetric Synthesis (Eds:
A. Alexakis, N. Krause, S. Woodward) Wiley, Weinheim, 2014,
Chapter 4, pp. 85−125. (b) Alexakis, A.; Backvall, J. E.; Krause, N.;
Pamies, O.; Dieguez, M. Enantioselective Copper-Catalyzed Conju-
gate Addition and Allylic Substitution Reactions. Chem. Rev. 2008,
108, 2796−2823.
ized Phosphorescence Angew. Chem. Int. Ed. 2017, 56, 8236−8239.
(7) (a) Ōki, M. Recent Advances in Atropisomerism, in Topics in
Stereochemistry, Vol. 14 (Eds.: Allinger, N. L.; Eliel, E. L.; Wilen, S.
H.), Hoboken, NJ, John Wiley & Sons, 1983, pp. 1-82; (b) Ibon, A.;
Elguero, J.; Roussel, C.; Vanthuyne, N.; Piras, P. Atropisomerism and
Axial Chirality, in Heteroaromatic Compounds. Advances in Hetero-
cyclic Chemistry, 2012, 105, 1–188.
1
2
3
4
5
6
7
8
9
(8) (a) Adamo, C.; Barone, V. Toward Reliable Density Functional
Methods without Adjustable Parameters: The PBE0 Model. J. Chem.
Phys. 1999, 110, 6158–6170; (b) Weigend, F.; Ahlrichs, R. Balanced
Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta
Valence Quality for H to Rn: Design and Assessment of Accuracy.
Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; (c) Grimme, S.; Anto-
ny, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio
Parametrization of Density Functional Dispersion Correction (DFT-
D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104–
154104; (d) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J.
E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dan-
nenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J.
B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford
CT, 2013.
(9) Imidazolium salts were prepared in moderate yields by adapting
protocols from the literature, see: (a) Zhang, J.; Fu, J.; Su, X.; Wang,
X.; Song, S.; Shi, M. Synthesis of Various Saturated and Unsaturated
N-Heterocyclic Carbene Precursors by Triflic Anhydride Mediated
Intramolecular Cyclization. Chem. Asian J. 2013, 8, 552–555;
(10) For the synthesis of Cu-NHC complexes, see for instance:
Lazreg, F.; Cazin, C. S. J. NHC-copper complexes and their applica-
tions in N-Heterocyclic Carbenes – Effective Tools for Organometal-
lic Synthesis; Nolan, S. P. Ed.; Wiley-VCH, Mannheim, 2014, 199-
242.
(11) Wendt, O. F. Transmetalation Reactions Involving Group 10
Metals. Curr. Org. Chem. 2007, 11, 1417−1433;
(12) For previous works on transmetalation with copper-
complexes, see: (a) Santoro, O.; Lazreg, F.; Cordes, D. B.; Slawin, A.
M. Z.; Cazin, C. S. J. Homoleptic and Heteroleptic Bis-NHC Cu(I)
(19) See Supporting Information, Table S22.
(20) It is noteworthy that the chiral induction reached here is one of
the best reported so far regarding the class of C1-symmetric monoden-
tate NHCs, see ref. 3.
(21) For a selected example of successful Pd-AIA promoted by chi-
ral NHC ligands, see: Kündig, E. P.; Seidel, T.M.; Jia, Y.-X.; Ber-
nardinelli, G. Bulky Chiral Carbene Ligands and Their Application in
the Palladium‐Catalyzed Asymmetric Intramolecular α‐Arylation of
Amides. Angew. Chem. Int. Ed. 2007, 46, 8484−8487. See also ref. 4.
(22) See Supporting Information, Table S24.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Complexes
as
Carbene
Transfer
Reagents.
Dalton
Trans. 2016, 45, 4970−4973; (b) Nahra, F.; Gomez-Herrera, A.;
Cazin, C. S. J. Copper(I)–NHC Complexes as NHC Transfer Agents.
Dalton Trans. 2017, 46, 628−631.
(13) For selected recent examples of synthesis of Pd- and Au-NHC
complexes, see: (a) Vanden Broeck, S. M. P.; Nahra, F.; Cazin, C. S.
J. Bulky-yet-flexible Carbene Ligands and Their Use in Palladium
Cross-coupling. Inorganics, 2019, 7, 78; (b) Zinser, C. M.; Nahra, F.;
Falivene, L.; Brill, M.; Cordes, D. B.; Slawin, A. M. Z.; Cavallo, L.;
Cazin, C. S. J.; Nolan, S. P. Synthesis and Reactivity of [Au(NHC)
(Bpin)] Complexes. Chem. Commun. 2019, 55, 6799−6802.
(14) See Supporting Information, Table S1, entry 5.
(15) These values are in line with those determined both by DFT
calculations and experimentally in previous reports, see: (a) Luan, X.;
Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.; Linden,
A.; Dorta, R. Identification and Characterization of a New Family of
Catalytically Highly Active Imidazolin-2-ylidenes. J. Am. Chem. Soc.
2008, 130, 6848−6858; (b) Laidlaw, G.; Wood, S. H.; Kennedy, A.
R.; Nelson, D. J. An N-Heterocyclic Carbene with a Saturated Back-
bone and Spatially-Defined Steric Impact. Z. Anorg. Allg. Chem.
2019, 645, 105−112.
(16) See Supporting Information, Schemes S1 and S2.
(17) See Supporting Information, Scheme S11.
ACS Paragon Plus Environment