A. Kumar, R. A. Maurya / Tetrahedron Letters 48 (2007) 3887–3890
3889
4. (a) Klusa, V. Drugs Future 1995, 20, 135–138; (b) Bretzel,
R. G.; Bollen, C. C.; Maester, E.; Federlin, K. F. Am. J.
Kidney. Dis. 1993, 21, 54–63; (c) Bretzel, R. G.; Bollen, C.
C.; Maester, E.; Federlin, K. F. Drugs Future 1992, 17,
465–468; (d) Boer, R.; Gekeler, V. Drugs Future 1995, 20,
499–509.
5. (a) Zhang, D.; Wu, L. Z.; Zhou, L.; Han, X.; Yang, Q. Z.;
Zhang, L. P.; Tung, C. H. J. Am. Chem. Soc. 2004, 126,
3440–3441; (b) Eynde, J. J. V.; Delfosse, F.; Mayence, A.;
Haverbeke, Y. V. Tetrahedron 1995, 51, 6511–6516; (c)
Anniyappan, M.; Muralidharan, D.; Perumal, P. T.
Tetrahedron 2002, 58, 5069–5073; (d) Heravi, M. M.;
Behbahani, F. K.; Oskooie, H. A.; Shoar, R. H. Tetra-
hedron Lett. 2005, 46, 2775–2777; (e) Esfahani, M. N.;
Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.;
Momeni, A. R. Bioorg. Med. Chem. 2006, 14, 2720–2724.
6. Loev, B.; Snader, K. M. J. Org. Chem. 1965, 30, 1914–
1916.
7. Tu, S.-J.; Zhou, J.-F.; Deng, X.; Cai, P.-J.; Wang, H.;
Feng, J.-C. Chin. J. Org. Chem. 2001, 21, 313–316.
8. Sabita, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadav, J. S.
Tetrahedron Lett. 2003, 44, 4129–4131.
9. Ji, S. J.; Jiang, Z. Q.; Lu, J.; Loh, T. P. Synlett 2004, 831–
835.
10. Breitenbucher, J. G.; Figliozzi, G. Tetrahedron Lett. 2000,
41, 4311–4315.
11. Dondoni, A.; Massi, A.; Minghini, E.; Bertolasi, V.
Tetrahedron 2004, 60, 2311–2326.
12. Wang, L. M.; Sheng, J.; Zhang, L.; Han, J. W.; Fan, Z. Y.;
Tian, H.; Qian, C. T. Tetrahedron 2005, 61, 1539–1543.
13. Ko, S.; Yao, C.-F. Tetrahedron 2006, 62, 7293–7299.
14. Maheswara, M.; Siddaiah, V.; Damu, G. L. V.; Rao, C. V.
Arkivoc 2006, 201–206.
15. (a) Chandrasekhar, S.; Reddy, N. S.; Sultana, S. S.;
Narsihmulu, C.; Reddy, K. V. Tetrahedron 2006, 62, 338–
345; (b) Li, H.; Wang, B.; Deng, L. J. Am. Chem. Soc.
2006, 128, 732–733; (c) Poulsen, T. B.; Bernardy, L.; Bell,
M.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2006, 45, 1–5.
16. (a) Rasalkar, M. S.; Potdar, M. K.; Mohile, S. S.;
Salunkhe, M. M. J. Mol. Catal. A: Chem. 2005, 235,
267–270; (b) Alcaide, B.; Almendros, P.; Luna, A.; Torres,
M. S. J. Org. Chem. 2006, 71, 4818–4822.
adducts were the major products isolated. The results of
this study are shown in Table 1.
We also carried out a reaction in which the bakers’ yeast
(200 mg) and D-glucose (300 mg) were taken in 5 ml
phosphate buffer (pH 7.0) and stirred overnight. Then
dimedone–aldehyde adduct (5a, 1 mmol), ethyl aceto-
acetate (130 mg, 1 mmol) and ammonium acetate
(75 mg, 1 mmol) were added to the reaction mixture.
The reaction was stirred for 24 h leading to polyhydro-
quinoline derivative 4a, which was isolated by column
chromatography in 24% yield (Scheme 3).
We proceeded to synthesize a series of polyhydroquino-
line derivatives via unsymmetrical Hantzsch reaction
catalyzed by bakers’ yeast.27 Various functionalized aryl
aldehydes reacted smoothly to give polyhydroquinoline
derivatives in high yields. Hydroxy, methoxy, ethoxy,
nitro and chloro substituted aldehydes were tolerated.
We also carried out the reaction with other b-keto esters
(methyl acetoacetate and t-butyl acetoacetate). The
results of this study are shown in Table 2.
In conclusion, we have successfully developed an easy,
efficient and versatile method for the synthesis of poly-
hydroquinoline derivatives from the reaction of alde-
hydes, b-keto esters, dimedone and ammonium acetate
catalyzed by bakers’ yeast at room temperature. The
process does not require the use of any volatile organic
solvent, harmful metal catalyst and thus, is a simple,
environmentally friendly, and high yielding reaction
for the synthesis of polyhydroquinolines via unsymmet-
rical Hantzsch reaction.
Acknowledgement
R.A.M. is thankful to the CSIR, New Delhi for financial
support in the form of a junior research fellowship.
17. Janey, J. M.; Hsiano, Y.; Armstrong, J. D., III. J. Org.
Chem. 2006, 71, 390–392.
18. (a) Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bogevig,
A.; Jorgensen, K. A. J. Am. Chem. Soc. 2002, 124, 827–
833; (b) Kotrusz, P.; Toma, S. Molecules 2006, 11, 197–
205.
Supplementary data
19. (a) Ramachary, D. B.; Chodari, N. S.; Barbas, C. F., III.
Angew. Chem. 2003, 115, 4365–4369; (b) Kotrusz, P.;
Toma, S. Arkivoc 2006, 100–109.
20. Hossein, A. O.; Elham, R.; Majid, M. H. J. Chem. Res.
2006, 246–247.
The NMR spectra and details are attached as Supple-
mentary data. Supplementary data associated with this
article can be found, in the online version, at
21. (a) Yadav, J. S.; Kumar, S. P.; Kondaji, G.; Rao, R. S.;
Nagaiah, K. Chem. Lett. 2004, 33, 1168–1169; (b) Mabry,
J.; Ganem, B. Tetrahedron Lett. 2006, 47, 55–56.
22. Sih, C. J.; Chen, C.-S. Angew. Chem., Int. Ed. Engl. 1984,
23, 570.
References and notes
23. Csuk, R.; Glanzer, B. I. Chem. Rev. 1991, 91, 49–97.
24. (a) Fuganti, C.; Grasselli, P.; Servi, S.; Speafico, F.;
Ziroty, C. J. Org. Chem. 1984, 49, 4087–4089; (b) Fuganti,
C. Pure Appl. Chem. 1990, 62, 1449–1452; (c) Utaka, M.;
Konisi, S.; Tkeda, A. Tetrahedron Lett. 1986, 27, 4737–
4740; (d) Ohta, H.; Kobavashi, N.; Ozaki, K. J. Org
Chem. 1989, 54, 1802–1804; (e) Rao, K. R.; Kumar, H. M.
S. Bioorg. Med. Chem. Lett. 1991, 10, 507–508.
25. Lee, J. H. Tetrahedron Lett. 2005, 46, 7329–7330.
26. Kumar, A.; Maurya, R. A. Tetrahedron 2007, 63, 1952–
1956.
1. (a) Bossert, F.; Meyer, H.; Wehinger, E. Angew. Chem.,
Int. Ed. Engl. 1981, 20, 762–769; (b) Nakayama, H.;
Kasoaka, Y. Heterocycles 1996, 42, 901–909.
2. (a) Buhler, F. R.; Kiowski, W. J. Hypertens. 1987, 5, S3;
(b) Reid, J. L.; Meredith, P. A.; Pasanisi, F. J. Cardiovasc.
Pharmacol. 1985, 7, S18.
3. (a) Godfaid, T.; Miller, R.; Wibo, M. Pharmacol. Rev.
1986, 38, 321–327; (b) Sausins, A.; Duburs, G. Hetero-
cycles 1988, 7, 269–289; (c) Mannhold, R.; Jablonka, B.;
Voigdt, W.; Schoenafinger, K.; Schravan, K. Eur. J. Med.
Chem. 1992, 27, 229–235.