Communication
ChemComm
water-soluble naphthoquinone (1,2-naphthoquinone-4-sulfonic Individual Fellowship (Global) under the EU Commission’s
app
M
acid sodium salt) yielded a K
of 2.9 Æ 0.1 mM glucose and Horizon 2020 framework (project number 654836).
a Vmax of 10.6 Æ 0.1 mU (followed at 450 nm) (Fig. S1, ESI†).
The similarities between the kinetics of the immobilized
NAD-GDH and the solution based NAD-GDH reflect the limitation
of the NAD-GDH on the bioelectrode by the concentration of
NADH (as outlined above), resulting in a system that can be
used to further study the enzymatic kinetics of NAD-dependent
enzymes.
References
1
A. Heller, Phys. Chem. Chem. Phys., 2004, 6, 209–216.
2 S. D. Minteer, P. Atanassov, H. R. Luckarift and G. R. Johnson,
Mater. Today, 2012, 15, 166–173.
3
D. Leech, P. Kavanagh and W. Schuhmann, Electrochim. Acta, 2012,
4, 223–234.
4 S. C. Barton, J. Gallaway and P. Atanassov, Chem. Rev., 2004, 104,
867–4886.
8
In light of high power EFCs that have been reported using
NAD-dependent enzymes, the NAD-GDH bioelectrodes presented
4
5
H. Sakai, T. Nakagawa, Y. Tokita, T. Hatazawa, T. Ikeda, S. Tsujimura
and K. Kano, Energy Environ. Sci., 2009, 2, 133–138.
above were coupled with an enzymatic O -reducing biocathode to
2
create a glucose/O2 EFC (depicted in Fig. 3). The anodic and
cathodic chambers were separated by a Nafion membrane
separator to prevent crossover and competitive oxidation of NADH
at the biocathode (ESI†). Laccase biocathodes were prepared with
the use of anthracene-functionalized multi-walled carbon nano-
tubes (Ac-MWCNTs), whereby the anthracene moieties serve to
6 R. D. Milton, D. P. Hickey, S. Abdellaoui, K. Lim, F. Wu, B. Tan and
S. D. Minteer, Chem. Sci., 2015, 6, 4867–4875.
7
8
I. Osadebe and D. Leech, ChemElectroChem, 2014, 1, 1988–1993.
B. Reuillard, A. Le Goff, C. Agnes, M. Holzinger, A. Zebda,
C. Gondran, K. Elouarzaki and S. Cosnier, Phys. Chem. Chem. Phys.,
2
013, 15, 4892–4896.
9
Z. Zhu, T. Kin Tam, F. Sun, C. You and Y. H. Percival Zhang, Nat.
Commun., 2014, 5, 3026.
orientate the T1 Cu centre of laccase and afford direct electron 10 D. P. Hickey, A. J. Halmes, D. W. Schmidtke and D. T. Glatzhofer,
Electrochim. Acta, 2014, 149, 252–257.
1 D. P. Hickey, F. Giroud, D. W. Schmidtke, D. T. Glatzhofer and
S. D. Minteer, ACS Catal., 2013, 3, 2729–2737.
transfer (DET). The resulting laccase biocathodes are able to
1
À
undergo a 4e reduction of O to H O without the need for an
2
2
25
electron mediator (direct bioelectrocatalysis). The construction 12 A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston,
I. J. Higgins, E. V. Plotkin, L. D. L. Scott and A. P. F. Turner, Anal.
of the laccase biocathodes is reported within the ESI,† of this
manuscript.
Chem., 1984, 56, 667–671.
3 N. Mano, F. Mao and A. Heller, J. Am. Chem. Soc., 2003, 125,
6588–6594.
4 D. Macaodha, P. O. Conghaile, B. Egan, P. Kavanagh and D. Leech,
ChemPhysChem, 2013, 14, 2302–2307.
5 S. Tsujimura, K. Murata and W. Akatsuka, J. Am. Chem. Soc., 2014,
136, 14432–14437.
16 M. Shao, M. N. Zafar, M. Falk, R. Ludwig, C. Sygmund, C. K.
Peterbauer, D. A. Guschin, D. MacAodha, P. O. Conghaile,
D. Leech, M. D. Toscano, S. Shleev, W. Schuhmann and L. Gorton,
ChemPhysChem, 2013, 14, 2260–2269.
7 D. Fapyane, Y. Lee, C. Y. Lim, J.-H. Ahn, S.-W. Kim and I. S. Chang,
ChemElectroChem, 2014, 1, 1844–1848.
1
1
1
Fig. 4 presents a polarization curve and corresponding power
curve for a representative EFC; experiments were performed in
triplicate. The EFCs possessed an OCP of 766.7 Æ 4.9 mV, with
associated maximum current and power densities of 505.7 Æ
À2
À2
5
6.7 mA cm and 123.2 Æ 16.3 mW cm , respectively. Blank
EFCs (tested in the absence of glucose) yielded approximate
power densities of 17 mW cm , produced as a function of the
À2
1
method used to evaluate the EFCs.
In conclusion, we demonstrate the ability of a naphthoqui-
1
8 L. Gorton and E. Dominguez, Rev. Mol. Biotechnol., 2002, 82, 371–392.
none redox polymer to directly oxidize NADH in the absence 19 L. Gorton, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 1245–1258.
2
2
2
2
2
2
0 E. Katz, T. L o¨ tzbeyer, D. D. Schlereth, W. Schuhmann and
H.-L. Schmidt, J. Electroanal. Chem., 1994, 373, 189–200.
1 B. Reuillard, A. Le Goff and S. Cosnier, Anal. Chem., 2014, 86,
4409–4415.
2 S. P ¨o ller, M. Shao, C. Sygmund, R. Ludwig and W. Schuhmann,
Electrochim. Acta, 2013, 110, 152–158.
3 M. T. Meredith, F. Giroud and S. D. Minteer, Electrochim. Acta, 2012,
72, 207–214.
4 Z. Huan, B. Persson, L. Gorton, S. Sahni, T. Skotheim and P. Bartlett,
Electroanalysis, 1996, 8, 575–581.
of diaphorase, resulting in a simplified system. Resulting
NAD-GDH bioelectrodes were utilized as glucose bioanodes
with laccase O -reducing biocathodes in a glucose/O EFC.
It is anticipated that the system presented within this manuscript
will impact a large number of NAD-dependent EFCs and cascade
systems.
The authors thank the National Science Foundation and the
Army Research Office MURI (#W911NF1410263) grant for funding.
RDM acknowledges funding from a Marie Curie-Skłodowska
2
2
5 R. D. Milton, F. Giroud, A. E. Thumser, S. D. Minteer and R. C. T.
Slade, Chem. Commun., 2014, 50, 94–96.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015