10.1002/anie.201800681
Angewandte Chemie International Edition
COMMUNICATION
501–509; b) Z. Chen, J. J. Yin, Y. T. Zhou, Y. Zhang, L. Song, M.
Song, S. Hu, N. Gu, ACS Nano 2012, 6, 4001–4012; c) H. Wei, E.
Wang, Chem. Soc. Rev. 2013, 42, 6060-6093; d) J. Dong, L. Song, J. J.
Yin, W. He, Y. Wu, N. Gu, Y. Zhang, ACS Appl. Mater. Interfaces 2014,
6, 1959–1970; e) Y. Lin, J. Ren, X. Qu, Acc. Chem. Res. 2014, 47,
1097–1105; f) R. Ragg, M. N. Tahir, W. Tremel, Eur. J. Inorg. Chem.
2016, 2016, 1906–1915; g) Y. Huang, Z. Liu, C. Liu, E. Ju, Y. Zhang, J.
Ren, X. Qu, Angew. Chem. Int. Ed. 2016, 55, 6646–6650; h) A. A.
Vernekar, T. Das, G. Mugesh, Angew. Chem. Int. Ed. 2016, 55, 1412–
1416; i) N. Singh, M. A. Savanur, S. Srivastava, P. D’Silva, G. Mugesh,
Angew. Chem. Int. Ed. 2017, 56, 14267–14271; j) X. Wang, Y. Hu, H.
Wei, Inorg. Chem. Front. 2016, 3, 41-60; k) H. Cheng, Y. Liu, Y. Hu, Y.
Ding, S. Lin, W. Cao, Q. Wang, J. Wu, F. Muhammad, X. Zhao, D.
Zhao, Z. Li, H. Xing, H. Wei, Anal. Chem. 2017, 89, 11552-11559; l) Y.
Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L. Zhou, C.
Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, H. Wei. ACS Nano 2017, 11,
5558–5566.
relative concentrations of H2O2 and glutathione (GSH) and at
higher H2O2 concentrations, the nanospheres exhibit remarkably
higher activity as compared to that of nanowires, indicating that
the crystal facets play crucial roles in the catalytic activity. The
variations in the GPx-like activity originate from the difference in
the rate of formation of a V-peroxido species on the surface. The
results described in this paper on the modulation of redox
reactions by altering the size, shape and crystal facets may
open up opportunities not only for the design and synthesis of
nanomaterials with enzyme-like activity, but also for the
development of nanomaterial-based isozymes (nanoisozymes),
which essentially catalyse the same chemical reactions, but
exhibit a compartment-specific activity in biological systems.
[8]
[9]
A. A. Vernekar, D. Sinha, S. Srivastava, P. U. Paramasivam, P. D’Silva,
G. Mugesh, Nat. Commun. 2014, 5, 6301.
a) L. Hu, Q. Peng, Y. Li, J. Am. Chem. Soc. 2008, 130, 16136–16137;
b) A. X. Yin, X. Q. Min, Y. W. Zhang, C. H. Yan, J. Am. Chem. Soc.
2011, 133, 3816–3819; c) J. Mu, L. Zhang, G. Zhao, Y. Wang, Phys.
Chem. Chem. Phys. 2014, 16, 15709-15716; d) E. W. Zhao, H. Zheng,
R. Zhou, H. E. Hagelin-Weaver, C. R. Bowers, Angew. Chem. Int. Ed.
2015, 54, 14270–14275; e) Z. Zhang, X. Zhang, B. Liu, J. Liu, J. Am.
Chem. Soc. 2017, 139, 5412–5419; e) M. J. Manto, P. Xie, C. Wang,
ACS Catal. 2017, 7, 1931–1938.
Acknowledgements
This study was supported by the Science and Engineering
Research Board (EMR/IISc-01/2016) and DST Nanomission
(SR/NM/NS-1380/2014), New Delhi. G.M. and EDJ
acknowledge the SERB/DST for the award of J. C. Bose
National Fellowship. S. G. and P. R. thank the Indian Institute
Science, Bangalore, and N.K. thanks the CSIR, New Delhi for
the fellowships. The authors thank Dr. A. A. Vernekar, Prof. N.
Munichandraiah, Dr. R. Viswanatha, Dr. B. Kishore and Mr. S.
Prasad for their support and help with some of the experiments.
We also thank the MNCF Facility, CeNSE, IISc for the
spectroscopic and microscopic facilities.
[10] a) J. E. Park, M. Son, M. Hong, G. Lee, H. C. Choi, Angew. Chem. Int.
Ed. 2012, 51, 6383–6388; b) J. Jiang, K. Zhao, X. Xiao, L. Zhang, J.
Am. Chem. Soc. 2012, 134, 4473–4476; c) C. Li, C. Koenigsmann, W.
Ding, B. Rudshteyn, K. R. Yang, K. P. Regan, S. J. Konezny, V. S.
Batista, G. W. Brudvig, C. A. Schmuttenmaer, J. H. Kim, J. Am. Chem.
Soc. 2015, 137, 1520–1529; d) C. Ge, G. Fang, X. Shen, Y. Chong, W.
G. Wamer, X. Gao, Z. Chai, C. Chen, J. J. Yin, ACS Nano 2016, 10,
10436–10445; e) C. S. Tan, P. L. Hsieh, L. J. Chen, M. H. Huang,
Angew. Chem. Int. Ed. 2017, 56, 15339–15343; f) C. Yang, X. Yu, S.
Heissler, P. Weidler, A. Nefedov, Y. Wang, C. Wöll, T. Kropp, J. Paier,
J. Sauer, Angew. Chem. Int. Ed. 2017, 56, 16399–16404.
Conflict of interest
[11] F. Zhou, X. Zhao, C. Yuan, L. Li, Cryst. Growth Des. 2008, 8, 723–727.
[12] E. Hryha, E. Rutqvist, L. Nyborg, Surf. Interface Anal. 2012, 44, 1022–
1025.
The authors declare no conflict of interest.
[13] J. E. Molinari, I. E. Wachs, J. Am. Chem. Soc. 2010, 132, 12559–12561.
[14] a) M. L. Circu, T. Y. Aw, Free Radic. Res. 2011, 45, 1245–1266; b) L.
Flohé, Biochim. Biophys. Acta, 2013, 1830, 3139–3142; c) Y. Huang, F.
Pu, J. Ren, X. Qu, Chem. Eur. J. 2017, 23, 9156-9161.
[15] M. Ek, Q. M. Ramasse, L. Arnarson, P. Georg Moses, S. Helveg, Nat.
Commun. 2017, 8, 305.
Keywords: antioxidants • crystal facet • glutathione peroxidase •
nanozymes • oxidative stress
[1]
[2]
a) V. Adler, Z. Yin, K. D. Tew, Z. Ronai, Oncogene 1999, 18, 6104–
6111; b) B. D’Autréaux, M. B. Toledano, Nat. Rev. Mol. Cell Biol. 2007,
8, 813–824; c) M. Schieber, N. S. Chandel, Curr. Biol. 2014, 24, R453–
R462; d) H. Sies, Redox Biol. 2015, 4, 180–183; e) C. Lennicke, J.
Rahn, R. Lichtenfels, L. A. Wessjohann, B. Seliger, Cell Commun.
Signal. 2015, 13, 1–19; f) R. Mittler, Trends Plant Sci. 2017, 22, 11–19.
a) K. J. Davies, J Biol Chem. 1987, 262, 9895-9901; b) A. Terman, U. T.
Brunk, Antioxid. & Redox Signal. 2006, 8, 197-204; c) I. Dalle-Donne, G.
Aldini, M. Carini, R. Colombo, R. Rossi, A. Milzani, J. Cell Mol. Med.
2006, 10, 389-406; d) E. Ju, K. Dong, Z. Chen, Z. Liu, C. Liu, Y. Huang,
Z. Wang, F. Pu, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2016, 55,
11467–11471.
[3]
[4]
[5]
a) O. I. Aruoma, Jaocs 1998, 75, 199–212; b) T. Finkel, N. J. Holbrook,
Nature 2000, 408, 239–247; c) K. J. Barnham, C. L. Masters, A. I. Bush,
Nat. Rev. Drug Discov. 2004, 3, 205–214.
a) J. R. Arthur, Cell. Mol. Life Sci. 2001, 57, 1825–1835; b) E. V.
Kalinina, N. N. Chernov, M. D. Novichkova, Biochem. 2014, 79, 1562–
1583.
a) S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M.
Zaitsev, C. E. Gleason, D. N. Patel, A. J. Bauer, A. M. Cantley, W. S.
Yang, B. Morrison, B. R. Stockwell, Cell 2012, 149, 1060–1072; b) W. S.
Yang, R. Sriramaratnam, M. E. Welsch, K. Shimada, R. Skouta, V. S.
Viswanathan, J. H. Cheah, P. A. Clemons, A. F. Shamji, C. B. Clish, L.
M. Brown, A. W. Girotti, V. W. Cornish, S. L. Schreiber, B. R. Stockwell,
Cell 2014, 156, 317–331.
[6]
[7]
a) H. Sies, Redox Biol. 2017, 11, 613–619; b) H. S. Marinho, C. Real, L.
Cyrne, H. Soares, F. Antunes, Redox Biol. 2014, 2, 535–562; c) T.
Rabilloud, M. Heller, F. Gasnier, S. Luche, C. Rey, R. Aebersold, M.
Benahmed, P. Louisot, J. Lunardi, J. Biol. Chem. 2002, 277, 19396–
19401.
a) R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H.
C. Schröder, W. E. G. Müller, W. Tremel, Adv. Funct. Mater. 2011, 21,
This article is protected by copyright. All rights reserved.