JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
a PVAc-PVBz copolymer. Using SEC, the polydispersity of
the resultant PVAc-PVBz copolymer was determined to be
8 Moad, G.; Rizzardo, E.; Thang, S. H. Polymer 2008, 49,
1079–1131.
1
M /M ¼ 1.74 (against PS Standards). Quantitative H NMR
w
n
9 Jitchum, V.; Perrier, S. Macromolecules 2007, 40, 1408–1412.
analysis shows that this polymer contains 51.1 mol % VBz
1
0 Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z. Macromol
and the polymer has a calculated Mn,total ¼ 24.4 kg/mol.
Rapid Commun 2000, 21, 1035–1039.
Synthesis of Poly(vinyl 4-methoxybenzoate)
1
1 Stenzel, M. H.; Cummins, L.; Roberts, G. E.; Davis, T. P.; Vana,
To a Schlenk flask equipped with a stirbar, vinyl 4-methoxy-
benzoate (2.51 g, 14.0 mmol), Co(acac)2 (18.6 mg, 0.073
mmol), lauoryl peroxide (22.2 mg, 0.056 mmol), and citric
acid tribasic sodium salt (10.7 mg, 0.041 mmol) were added.
On a vacuum line, anhydrous C H (8.8 mL) was added to
P.; Barner-Kowollik, C. Macromol Chem Phys 2003, 204,
1160–1168.
1
2 Lipscomb, C. E.; Mahanthappa, M. K. Macromolecules 2009,
4
2, 4571–4579.
6
6
1
3 Gu, Y.; He, J.; Li, C.; Zhou, C.; Song, S.; Yang, Y. Macromo-
the reaction mixture under nitrogen and it was stirred at
ꢀ
lecules 2010, 43, 4500–4510.
30
C. After 77.5 h, the reaction was exposed to air and
poured into hexanes to yield a small amount of solid. M ¼
14 Wakioka, M.; Baek, K.-Y.; Ando, T.; Kamigaito, M.; Sawa-
n
2
.3 kg/mol, M /M ¼ 2.11.
moto, M. Macromolecules 2002, 35, 330–333.
w
n
1
5 Koumura, K.; Satoh, K.; Kamigaito, M. Macromolecules
CONCLUSIONS
2
008, 41, 7359–7367.
CMRPs of VPv and VBz were explored to extend this useful
degenerate chain transfer polymerization methodology to the
synthesis of well-defined vinyl ester block copolymers by
sequential chain extension reactions. Bulk homopolymeriza-
tion studies revealed that alkyl vinyl esters such as VAc and
VPv have comparable reactivities and their CMRP proceeds
with a high degree of control to yield polymers with Mw/
1
6 Ober, C. K.; Cheng, S. Z. D.; Hammond, P. T.; Muthukumar,
M.; Reichmanis, E.; Wooley, K. L.; Lodge, T. P. Macromolecules
2
009, 42, 465–471.
1
7 Schreck, K. M.; Hillmyer, M. A. J Biotechnol 2007, 132,
2
87–295.
18 Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Prog Polym
M ꢁ 1.3, whereas CMRP of VBz resulted in less controlled
Sci 2003, 28, 963–1014.
n
polymerization with higher polydispersities M
w
/M
n
ꢁ 1.7.
1
9 Matsumura, S. Biopolymers 2003, 9, 329–361.
Sequential block copolymerizations of VAc with either VPv
or VBz yield unimodal block copolymers with variable mo-
lecular weights that may microphase separate in the melt.
These findings demonstrate that CMRP is a convenient and
complementary synthetic method to RAFT for the (co)poly-
merization of commercially available vinyl ester monomers.
Investigations of the mechanical properties of these new
block copolymers are ongoing and will be reported in due
course.
2
0 Heller, C.; Schwentenwein, M.; Russmueller, G.; Varga, F.;
Stampfl, J.; Liska, R. J Polym Sci Part A: Polym Chem 2009, 47,
6
941–6954.
2
1 Daniels, W. E. In Encyclopedia of Polymer Science and
Engineering, 2nd ed.; Mark, H. F., Ed.; Wiley: New York, 1985;
Vol. 17, pp 393–445.
22 David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-
Desmazes, P.; Boutevin, B. Chem Rev 2006, 106, 3936–3962.
2
3 Kamigaito, M.; Satoh, K. J Polym Sci Part A: Polym Chem
Financial support from the University of Wisconsin–Madison
and from a National Science Foundation CAREER Award (DMR-
2
006, 44, 6147–6158.
0748503) is gratefully acknowledged. This research also made
24 Koumura, K.; Satoh, K.; Kamigaito, M.; Okamoto, Y. Macro-
extensive use of NSF-MRSEC and NSF-NSEC supported charac-
terization facilities at the University of Wisconsin (DMR-
molecules 2006, 39, 4054–4061.
2
5 Yamago, S. Chem Rev 2009, 109, 5051–5068.
0520527 and DMR-0425880).
2
6 Debuigne, A.; Poli, R.; Jerome, C.; Jerome, R.; Detrembleur,
C. Prog Polym Sci 2009, 34, 211–239.
REFERENCES AND NOTES
27 Hurtgen, M.; Debuigne, A.; Jerome, C.; Detrembleur, C.
Macromolecules 2010, 43, 886–894.
1
2
Percec, V. Chem Rev 2009, 109, 4961–4962.
2
8 Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B.
Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Mays, J. Prog
Macromolecules 2008, 41, 2368–2373.
Polym Sci 2006, 31, 1068–1132.
2
9 Kumar, K. S. S.; Gnanou, Y.; Champouret, Y.; Daran, J.-C.;
3
4
5
Aoshima, S.; Kanaoka, S. Chem Rev 2009, 109, 5245–5287.
Kwon, Y.; Faust, R. Adv Polym Sci 2004, 167, 107–135.
Matyjaszewski, K.; Xia, J. Chem Rev 2001, 101, 2921–2990.
Poli, R. Chem Eur J 2009, 15, 4874–4885.
3
0 Sherwood, R. K.; Kent, C. L.; Patrick, B. O.; McNeil, W. S.
Chem Commun 2010, 46, 2456–2458.
6
Kamigaito, M.; Ando, T.; Sawamoto, M. Chem Rev 2001, 101,
3
1 Debuigne, A.; Caille, J.-R.; Detrembleur, C.; Jerome, R.
3689–3746.
Angew Chem Int Ed Engl 2005, 44, 3439–3442.
7
Hawker, C. J.; Bosman, A. W.; Harth, E. Chem Rev 2001, 101,
3
2 Debuigne, A.; Champouret, Y.; Jerome, R.; Poli, R.; Detrem-
3661–3688.
bleur, C. Chem Eur J 2008, 14, 4046–4059.
248
WILEYONLINELIBRARY.COM/JOURNAL/JPOLA