C O M M U N I C A T I O N S
Table 2. Experimental and Calculated J(Si-H) Values (in Hz) and
Calculated Si-H Bond Lengths (in Å) for Silane σ-Complexes 4-6
on silylium ion abstraction in 4, by a carbonyl substrate followed
by hydride transfer to the silyloxy carbenium ion.
a
b
c
d
e
f
Acknowledgment. This work was supported by NSERC, OPIC,
and MCINN. We thank CFI and OIT for a generous equipment
grant.
4 (exp.)
(calc.)
5
53
-34.8
59
33
1.996
45
-19.9
48
45
1.980
45
-17.8
47
50
1.947
48
48
50
-33.2a
-
-
39
-
-
-
-
6
46
Supporting Information Available: Experimental and computa-
tional details. This material is available free of charge via the Internet
Si-H
1.898a
a Calculated data for complex 4g with R3 ) Me3.
Scheme 1. Ionic Hydrosilylation and Dissociative Ojima-Type
References
Pathways Calculated by DFTa
(1) (a) Lachaize, S.; Sabo-Etienne, S; Donnadieu, B.; Chaudret, B. Chem.
Commun. 2003, 214. (b) Yang, J.; White, P. S.; Brookhart, M. J. Am. Chem.
Soc. 2008, 130, 17509.
(2) (a) Nikonov, G. I. AdV. Organomet. Chem. 2005, 53, 217–309. (b) Lin, Z.
Chem. Soc. ReV. 2002, 31, 239. (c) Corey, J. Y.; Braddock-Wilking, J.
Chem. ReV. 1999, 99, 175. (d) Kubas, G. J. Metal Dihydrogen and s-Bond
Complexes; Kluwer Academic/Plenum: New York, 2001. (e) Crabtree, R. H.
Angew. Chem., Int. Ed. Engl. 1993, 32, 789.
(3) Labile, NMR characterized: (a) Luo, X.-L.; Crabtree, R. H. J. Am. Chem.
Soc. 1989, 111, 2527. (b) Huhmann-Vincent, J.; Scott, B. L.; Kubas, G. J.
Inorg. Chim. Acta 1999, 294, 240. (c) Scharrer, E.; Chang, S.; Brookhart,
M. Organometallics 1995, 14, 5686. (d) Fang, X.; Huhmann-Vincent, J.;
Scott, B. L.; Kubas, G. J. J. Organomet. Chem. 2000, 609, 95. (e) Fang,
X.; Scott, B. L.; John, K. D.; Kubas, G. J. Organometallics 2000, 19, 4141.
(4) Isolated, X-ray characterized: (a) Freeman, S. T. N.; Lemke, F. R.; Brammer,
L. Organometallics 2002, 21, 2030. (b) Yang, J.; White, P. S.; Schauer,
C. K.; Brookhart, M. Angew. Chem., Int. Ed. 2008, 47, 4141.
(5) Gutsulyak, D. V.; Kuzmina, L. G.; Howard, J. A. K.; Vyboishchikov, S. F.;
Nikonov, G. I. J. Am. Chem. Soc. 2008, 130, 3732.
21
a Gibbs energies are given in kcal ·mol-1
.
(6) For recent reviews on hydrosilylation of carbonyls, see: (a) Carpentier,
J.-F.; Bette, V. Curr. Org. Chem. 2002, 6, 913. (b) Riant, O.; Mosterfai,
N.; Courmarcel, J. Synthesis 2004, 18, 2943.
(7) For hydrosilylation of esters, see: (a) Mao, Z.; Gregg, B. T.; Cutler, A. R.
J. Am. Chem. Soc. 1995, 117, 10139. (b) Ojima, I.; Kogure, T.; Kumagai,
M. J. Org. Chem. 1977, 42, 1671. (c) Igarashi, M.; Mizuno, R.; Fuchikami,
T. Tetrahedron Lett. 2001, 42, 2149. (d) Berc, S. C.; Kreutzer, K. A.;
Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 5093. (e) Berc, S. C.;
Buchwald, S. L. J. Org. Chem. 1992, 57, 3751.
(8) Dioumaev, V. K.; Bullock, R. M. Nature 2003, 424, 530.
(9) For metal-free reactions with a similar mechanism, see: (a) Parks, D. J.;
Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090. (b) Parks,
D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440. (c) Gevorgyan, V.;
Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2000, 65,
6179. (d) Scott, V. J.; Celenligil-Cetin, R.; Ozerov, O. V. J. Am. Chem.
Soc. 2005, 127, 2852.
(10) For dehydrogenative coupling of silanes with amines and ammonia, see:
(a) Nametkin, N. S.; Chernysheva, T. I.; Gevenyan, M. L.; Lashenko, I. N.;
Pritula, N. A. IzV. Akad. Nauk SSSR, Ser. Khim. 1972, 10, 2230. (b) Wang,
W. D.; Eisenberg, R. Organometalics 1991, 10, 2222. (c) Biran, C.; Blum,
Y. D.; Glaser, R.; Tse, D. S.; Youngdahl, K. A.; Laine, R. M. J. Mol.
Catal. 1988, 48, 183. (d) Blum, Y.; Laine, R. M. Organometallics 1986,
5, 2081. (d) Kono, H.; Ojima, I. Org. Prep. Proc. Int. 1973, 5, 135.
(11) For the coupling of silanes with water as a source of H2, see: (a) Ison,
E. A.; Corbin, R. A.; Abu-Omar, M. M. J. Am. Chem. Soc. 2005, 127,
11938. (b) Corbin, R. A.; Ison, E. A.; Abu-Omar, M. M. Dalton Trans.
2009, 2850.
(12) For selected examples of catalytic dehalogenation of haloalkanes and arenes
by hydrosilanes, see: (a) Yang, J.; Brookhart, M. AdV. Synth. Catal. 2009,
351, 175. (b) Karstedt, D.; Bell, A. T.; Tilley, T. D. Organometallics 2006,
25, 4471. (c) Petersen, A. A.; McNeill, K. Organometallics 2006, 25, 4938.
(d) Esteruelas, M. A.; Herrero, J.; Oliva´n, M. Organometallics 2004, 23,
3891, and references therein.
(13) Gutsulyak, D. V.; Kuzmina, L. G.; Howard, J. A. K.; Vyboishchikov, S. F.;
Nikonov, G. I. Organometallics 2009, 28, 2655.
(14) This trend can be rationalized in terms of a combination of reduced back-
donation from metal and reduced Si 3s character in the Si-H bond in the
less chlorinated species.
complex 4a with the longest Si-H bond (1.996 Å). The rationale
for this anomaly is that the Si-H bond in 4a, although more
activated than that in 4g, has increased Si 3s character. Previously,
such unusually increased Si-H coupling has been found only in
complexes with interligand hypervalent interactions and agostic
Si-H bonds.17
1H EXSY spectra of complexes 4 do not show any exchange
with free nitrile. However, a reaction of 4b with 15 equiv of acetone
leads to the bis(nitrile) 2 and a new labile mono(phosphine) silane
σ-complex (J(H-Si) ) 40 Hz), which may suggest a usual Ojima
type mechanism of hydrosilylation based on nitrile dissociation,
η2-carbonyl coordination, and silyl migration.18 However, DFT
COSMO calculations taking into account solvent effects show that
acetone addition to [Cp(Me3P)Ru(η2-HSiMe3)]+ gives only the η1-
OdCMe2 derivative [Cp(Me3P)Ru(η2-HSiMe3)(η1-OCMe2)]+ which
resists silyl migration to the oxygen atom. For an alternative
mechanism, the ionic hydrosilylation (Scheme 1),8,19 we found that
direct Me3Si+ transfer to the carbonyl is the rate-determining step
(∆‡G°298 ) 18.6 kcal ·mol-1). This is followed by a low-barrier
(∆‡G°298
)
4
kcal · mol-1
)
hydride transfer from
Cp(Me3P)Ru(NCMe)(H) to [Me2C-O-SiMe3]+ to form the σ-com-
plex Cp(Me3P)Ru(NCMe)(η1-HsCMe2sOsSiMe3)+, which easily
dissociates Me2HCsOSiMe3. Similar pathways were suggested for
borane-catalyzed hydrosilylation,9a for dialkyl ether cleavage with
silanes mediated by a cationic Ir complex,1b and for silane
alcoholysis on electrophilic metal centers.20
(15) Significant Si · · · Cl bonding was found in neutral complexes 6 (ref 13).
(16) Experimental Si-H coupling constants are given in absolute values,
calculated J(H-Si) are negative due to negative gyromagnetic ratio of Si.
(17) (a) Dubberley, S. R.; Ignatov, S. K.; Rees, N. H.; Razuvaev, A. G.;
Mountford, P.; Nikonov, G. I. J. Am. Chem. Soc. 2003, 125, 644. (b)
Ignatov, S. K.; Rees, N. H.; Tyrrell, B. R.; Dubberley, S. R.; Razuvaev,
A. G.; Mountford, P.; Nikonov, G. I. Chem.sEur. J. 2004, 10, 4991.
(18) (a) Ojima, I.; Kogure, T.; Kumagai, M.; Horiuchi, S.; Sato, T. J. Organomet.
Chem. 1976, 122, 83. (b) Ojima, I. The Hydrosilation Reaction. In The
Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.;
Wiley: New York, 1989; Chapter 25.
Further support for this mechanistic proposal was found in the
dependence of silane alcoholysis on the nucleophilicity of alcohol
(Table 1, entries 7-10) suggesting that alcohol attack on the silane
ligand in 4f is the rate-determining step.
In conclusion, we found evidence that hydrosilylation of carbonyl
substrates catalyzed by 2 goes via intermediate formation of cationic
silane σ-complexes 4 and 5, whose Si-H coupling constants suggest
significantly reduced back-donation from the cationic ruthenium
center in comparison with neutral analogues. DFT studies of the
mechanism of hydrosilylation favored a reaction pathway based
(19) Du, G.; Fanwick, P. E.; Abu-Omar, M. M. J. Am. Chem. Soc. 2005, 129,
5180.
(20) (a) Kubas, G. J. AdV. Inorg. Chem. 2005, 56, 127. (b) Bu¨hl, M.; Mauschick,
F. T. Organometallics 2003, 22, 1422.
(21) For a slightly more elaborated scheme, see Supporting Information.
JA101583M
9
J. AM. CHEM. SOC. VOL. 132, NO. 17, 2010 5951