9978
T. Shibata et al. / Tetrahedron 61 (2005) 9974–9979
chromatography to give chiral cycloadduct 2. Enantiomeric
excess was determined by HPLC analysis using a chiral
column.
time (cited in the table). After the exclusion of excess
cinnamaldehyde and xylene, the crude products were
purified by thin-layer chromatography, and pure bicyclic
enone 2 was obtained. Enantiomeric excess was determined
by HPLC analysis using a chiral column.
4.2.1. 2-Isopropenyl-7-oxabicyclo[3.3.0]oct-1-en-3-one
(2d). Pale yellow oil. IR (neat) 2852, 1712, 1651, 1456,
1
1028, 903 cmK1; H NMR dZ1.80 (s, 3H), 2.22 (dd, JZ
3.0, 17.4 Hz, 1H), 2.72 (dd, JZ3.0, 17.4 Hz, 1H), 3.21–3.25
(m, 2H), 4.33 (dd, JZ5.8, 5.8 Hz, 1H), 4.63 (d, JZ16.6 Hz,
1H), 4.77 (d, JZ16.6 Hz, 1H), 5.21 (s, 1H), 5.61 (s, 1H);
13C NMR dZ22.2, 40.2, 43.3, 66.4, 71.4, 118.0, 134.6,
135.1, 176.5, 206.6; HRMS (EIC) for M found m/e
164.0824, calcd for C10H12O2: 164.0837. [a]3D1 K178.3 (c
1.17, CHCl3, 97% ee). Enantiomeric excess was determined
by HPLC analysis using a chiral column (Daicel Chiralpak
AD-H: 4!250 mm, 254 nm UV detector, room tempera-
ture, eluent: 3% 2-propanol in hexane, flow rate: 1.0 mL/
min, retention time: 15 min for major isomer and 16 min for
minor isomer).
Acknowledgements
This research was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science and Technology, Japan. We thank Prof. Koichi
Narasaka and Dr. Yuji Koga (University of Tokyo) for
helpful discussion. T. S. thanks the Inamori Foundation for
supporting this work.
References and notes
4.2.2. Diethyl 2-(benzyloxy)methyl-3-oxobicyclo[3.3.0]
oct-1-en-7,7-dicarboxylate (2i). Pale yellow oil. IR (neat)
1. (a) Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.
J. Chem. Soc., Perkin Trans. 1 1973, 977–981. (b) Khand,
I. U.; Pauson, P. L. J. Chem. Soc., Perkin Trans. 1 1976,
30–32.
1
2982, 1730, 1672, 1267 cmK1; H NMR dZ1.21–1.30 (m,
6H), 1.69 (dd, JZ12.7, 12.7 Hz, 1H), 2.11 (dd, JZ3.3,
17.9 Hz, 1H), 2.64 (dd, JZ6.2, 17.9 Hz, 1H), 2.78 (dd, JZ
7.7, 12.7 Hz, 1H), 2.98–3.06 (m, 1H), 3.34 (d, JZ20.6 Hz,
1H), 3.42 (d, JZ20.6 Hz, 1H), 4.19–4.24 (m, 6H), 4.53 (s,
2H), 7.25–7.34 (m, 5H); 13C NMR dZ14.1, 34.7, 38.8, 41.6,
43.5, 61.1, 61.9, 62.0, 63.1, 73.1, 127.5, 128.2 133.6, 137.8,
170.6, 171.3, 181.2, 207.4; HRMS (FAB) for MC1 found
m/e 387.1811, calcd for C22H27O6: 387.1808. [a]3D1 K48.2
(c 1.11, CHCl3, 88% ee). Enantiomeric excess was
determined by HPLC analysis using a chiral column (Daicel
Chiralpak AS-H: 4!250 mm, 254 nm UV detector, room
temperature, eluent: 10% 2-propanol in hexane, flow rate:
1.0 mL/min, retention time: 13 min for minor isomer and
17 min for major isomer).
2. (a) Harrington, P. J. In Transition Metals in Total Synthesis;
Wiley: New York, 1990, pp 259–301. (b) Blanco-Urgoiti, J.;
´ ´ ´
An˜orbe, L.; Perez-Serrano, L.; Domınguez, G.; Perez-Castells,
J. Chem. Soc. Rev. 2004, 33, 32–42.
3. Jeong, N.; Hwang, S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem.
Soc. 1994, 116, 3159–3160.
4. (a) Lee, B. Y.; Chung, Y. K.; Lee, Y.; Hwang, S. H. J. Am.
Chem. Soc. 1994, 116, 8793–8794. (b) Pagenkopf, B. L.;
Livinghouse, T. J. Am. Chem. Soc. 1996, 118, 2285–2286. (c)
Lee, N. Y.; Chung, Y. K. Tetrahedron Lett. 1996, 37,
3145–3148. (d) Jeong, N.; Hwang, S. H.; Lee, Y. W.; Lim,
J. S. J. Am. Chem. Soc. 1997, 119, 10549–10550. (e) Kim,
J. W.; Chung, Y. K. Synthesis 1998, 142–144. (f) Belanger,
D. B.; O’Mahony, D. J. R.; Livinghouse, T. Tetrahedron Lett.
1998, 39, 7637–7640. (g) Belanger, D. B.; Livinghouse, T.
Tetrahedron Lett. 1998, 39, 7641–7644. (h) Sugihara, T.;
Yamaguchi, M. J. Am. Chem. Soc. 1998, 120, 10782–10783.
(i) Sugihara, T.; Yamaguchi, M. Synlett 1998, 1384–1386. (j)
Hayashi, M.; Hashimoto, Y.; Yamamoto, Y.; Usuki, J.; Saigo,
K. Angew. Chem., Int. Ed. 2000, 39, 631–633.
4.2.3. 2-Phenyl-5-(2-propenyl)-7-oxabicyclo[3.3.0]oct-1-
1
en-3-one (2k). IR (neat) 1711, 1021, 919, 764 cmK1; H
NMR dZ2.25 (dd, JZ6.6, 13.5 Hz, 1H), 2.39 (d, JZ
17.4 Hz, 1H), 2.48 (dd, JZ8.1, 13.5 Hz, 1H), 2.69 (d, JZ
17.4 Hz, 1H), 3.40 (d, JZ8.1 Hz, 1H), 4.14 (d, JZ8.1 Hz,
1H), 4.58 (d, JZ16.4 Hz, 1H), 4.93 (d, JZ16.4 Hz, 1H),
5.12 (d, JZ0.9 Hz, 1H), 5.16 (d, JZ4.5 Hz, 1H), 5.59–5.77
(m, 1H), 7.32–7.51 (m, 5H); HRMS (EIC) for M found m/e
240.1160, calcd for C16H16O2: 240.1150. [a]2D3 C5.28 (c
0.56, CHCl3, 94% ee). Enantiomeric excess was determined
by HPLC analysis using a chiral column (Daicel Chiralpak
AD-H: 4!250 nm, 254 nm UV detecter, room temperature,
eluent: 10% 2-propanol in hexane, flow rate: 1.0 mL/min,
retention time: 8 min for minor isomer and 10 min for major
isomer).
5. (a) Geis, O.; Schmalz, H.-G. Angew. Chem., Int. Ed. 1998, 37,
911–914. (b) Jeong, N. In Beller, M, Bolm, C., Eds.; Transition
Metals In Organic Synthesis; Wiley-VCH: Weinheim, 1998;
Vol. 1, pp 560–577. (c) Chung, Y. K. Coord. Chem. Rev. 1999,
188, 297–341. (d) Hanson, B. E. Comments Inorg. Chem.
2002, 23, 289–318. (e) Gibson, S. E.; Stevenazzi, A. Angew.
Chem., Int. Ed. 2003, 42, 1800–1810. (f) Park, K. H.; Chung,
Y. K. Synlett 2005, 545–559.
6. (a) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am.
Chem. Soc. 1996, 118, 9450–9451. (b) Hicks, F. A.; Kablaoui,
N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,
5881–5898.
4.3. Typical experimental procedure for enantioselective
coupling using cinnamaldehyde as a CO source (Table 4)
Under an atmosphere of argon, tolBINAP (20.4 mg,
0.030 mmol) and [Ir(cod)Cl]2 (10.1 mg, 0.015 mmol) were
stirred in xylene (1.5 mL) at room temperature. After the
addition of a xylene solution (0.5 mL) of enyne 1
(0.30 mmol) and cinnamaldehyde (198.0 mg, 1.5 mmol),
the reaction mixture was stirred at 120 8C for an appropriate
7. (a) Morimoto, T.; Chatani, N.; Fukumoto, Y.; Murai, S. J. Org.
Chem. 1997, 62, 3762–3765. (b) Kondo, T.; Suzuki, N.;
Okada, T.; Mitsudo, T. J. Am. Chem. Soc. 1997, 119,
6187–6188.
8. (a) Koga, Y.; Kobayashi, T.; Narasaka, K. Chem. Lett. 1998,
249–250. (b) Jeong, N.; Lee, S.; Sung, B. K. Organometallics