Organic Letters
Letter
Similar to our previous findings, derivatives decorated with a
diphenylamino group exhibit larger NLO response than their
dimethylamino analogues (Qbtz-Me vs Qbtz-Ph, Q3-Me vs Q3-
Ph). TPA enhancement is even more pronounced when
employing a didodecylamino group (Q2-Ph vs Q2-Do, Q3-Ph
vs Q3-Do). This somewhat counterintuitive behavior is
confirmed by our calculations17 and can be rationalized by
involving additional optical channels in triphenylamine series,
which to some extent reduce the δTPA values obtained from the
three-state model (cf. Table S6). Both the elongation of pendant
alkyl chains and the extension of π-conjugation using a
diarylamino moiety offer thus a useful strategy not only to
increase the solubility but also to amplify δTPA, where the latter
modification is revealed as more suitable for engineering highly
emissive fluorophores.
To conclude, the fusion of the additional π-deficient
heteroaromatic ring to the central electron-accepting core must
not necessarily lead to TPA enhancement, as intuitively expected,
and may even have a detrimental effect on the NLO response
(Qbtz vs Q1, Q3−Q5). To benefit from this structural
modification, the relative position of heteroaromatic moieties
attached to the central ring has to be optimized to ensure an
efficient electronic coupling, which results in favorable one-
photon absorption parameters and an enhanced TPA response.
In this respect, the Q2 series with excellent TPA cross sections
(δTPA > 1600 GM), high emission quantum yields, and a facile
method for synthesis provides a low-cost and very efficient
alternative to many TPA fluorophores currently used.18 In
addition, all benzobisthiazoles have further possible points of
attachment, allowing for more modifications to modulate and
improve TPA cross sections using the same building block, for
example, by introducing auxiliary electron donor or acceptor
substituents on the heteroaromatic ring or by building multi-
branched structures via coordination of heterocyclic nitrogen
atoms to metal ions.
REFERENCES
■
(1) (a) Breitung, E. M.; Shu, C. F.; McMahon, R. J. J. Am. Chem. Soc.
2000, 122, 1154. (b) Hrobarik, P.; Zahradník, P.; Fabian, W. M. F. Phys.
Chem. Chem. Phys. 2004, 6, 495. (c) Hrobarik, P.; Sigmundova, I.;
́
́
́
́
Zahradník, P.; Kasak, P.; Arion, V.; Franz, E.; Clays, K. J. Phys. Chem. C
2010, 114, 22289. (d) Ma, X. H.; Ma, F.; Zhao, Z. H.; Song, N. H.;
Zhang, J. P. J. Mater. Chem. 2010, 20, 2369. (e) Raposo, M. M. M.;
Castro, M. C. R.; Belsley, M.; Fonseca, A. M. C. Dyes Pigm. 2011, 91, 454.
(f) El-Shishtawy, R. M.; Borbone, F.; Al-Amshany, Z. M.; Tuzi, A.;
Barsella, A.; Asiri, A. M.; Roviello, A. Dyes Pigm. 2013, 96, 45.
(2) Hrobar
Persephonis, P.; Zahradník, P. J. Org. Chem. 2010, 75, 3053.
(3) Hrobarik, P.; Hrobarikova, V.; Sigmundova, I.; Zahradník, P.; Fakis,
́ ́ ́ ̌
ikova, V.; Hrobarik, P.; Gajdos, P.; Fitilis, I.; Fakis, M.;
́
́
́
́
M.; Polyzos, I.; Persephonis, P. J. Org. Chem. 2011, 76, 8726.
(4) Belfield, K. D.; Morales, A. R.; Kang, B. S.; Hagan, D. J.; Van
Stryland, E. W.; Chapela, V. M.; Percino, J. Chem. Mater. 2004, 16, 4634.
(5) Yu, G.; Yin, S. W.; Liu, Y. Q.; Shuai, Z. G.; Zhu, D. B. J. Am. Chem.
Soc. 2003, 125, 14816.
(6) (a) Ando, S.; Murakami, R.; Nishida, J.; Tada, H.; Inoue, Y.; Tokito,
S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 14996. (b) McEntee, G. J.;
Vilela, F.; Skabara, P. J.; Anthopoulos, T. D.; Labram, J. G.; Tierney, S.;
Harrington, R. W.; Clegg, W. J. Mater. Chem. 2011, 21, 2091. (c) Lin, Y.
Z.; Fan, H. J.; Li, Y. F.; Zhan, X. W. Adv. Mater. 2012, 24, 3087.
(7) (a) Zhang, W. Y.; Feng, Q. Y.; Wang, Z. S.; Zhou, G. Chem.Asian
J. 2013, 8, 939. (b) Saeki, A.; Tsuji, M.; Yoshikawa, S.; Gopal, A.; Seki, S.
J. Mater. Chem. A 2014, 2, 6075.
(8) (a) He, G. S.; Tan, L. S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008,
108, 1245. (b) Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H.
L. Angew. Chem., Int. Ed. 2009, 48, 3244. (c) Kim, H. M.; Cho, B. R.
Chem. Commun. 2009, 153.
(9) (a) Reinhardt, B. A.; Unroe, M. R.; Evers, R. C.; Zhao, M. T.;
Samoc, M.; Prasad, P. N.; Sinsky, M. Chem. Mater. 1991, 3, 864.
(b) Intemann, J. J.; Mike, J. F.; Cai, M.; Barnes, C. A.; Xiao, T.; Roggers,
R. A.; Shinar, J.; Shinar, R.; Jeffries-EL, M. J. Polym. Sci., Part A: Polym.
Chem. 2013, 51, 916. (c) Bon, J. L.; Feng, D. J.; Marder, S. R.; Blakey, S.
B. J. Org. Chem. 2014, 79, 7766.
(10) Belfield, K. D.; Yao, S.; Morales, A. R.; Hales, J. M.; Hagan, D. J.;
Van Stryland, E. W.; Chapela, V. M.; Percino, J. Polym. Adv. Technol.
2005, 16, 150.
(11) DALTON, a molecular electronic structure program, 2011
tional details.
(12) The cis-configured isomers are energetically disfavored by >26 kJ/
mol, giving rise to a negligible Boltzmann weighting factor.
(13) Conformational dependence of δTPA has been recently reported
also in: Silva, D. L.; Murugan, N. A.; Kongsted, J.; Rinkevicius, Z.;
Canuto, S.; Agren, H. J. Phys. Chem. B 2012, 116, 8169.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental and computational details, computed TPA cross
sections and one-photon absorption characteristics, detailed
quantum-chemical analysis, synthetic procedures, and crystal
structure data for Q2-Ph·2CHCl3. This material is available free
(14) δTPA(S0→S2) of quadrupolar dyes is usually dominated by the
three-state term, which is proportional to the product |μ01|2|μ12|2 and
inversely proportional to the square of the detuning energy (E1 − E2/2).
(15) (a) Mike, J. F.; Inteman, J. J.; Ellern, A.; Jeffries-El, M. J. Org. Chem.
AUTHOR INFORMATION
■
̌
2010, 75, 495. (b) Cibova,
́
A.; Magdolen, P.; Fulopova, A.; Zahradník, P.
́
̈
̈
Corresponding Authors
Chem. Pap. 2013, 67, 110.
(16) (a) Fridman, S. G.; Golub, D. K. Chem. Heterocycl. Compd. 1965, 1,
713. (b) Kiprianov, A. I.; Mikhailenko, F. A. Chem. Heterocycl. Compd.
1967, 3, 270.
(17) See Figure S2 for a dependence of δTPA on the pendant alkyl chain
length in Q2-R series, where δTPA increases steadily to reach a plateau for
the dioctylamino group. Despite the higher μ01 and μ12 values for the
NPh2 end-capped derivative, its TPA activity is comparable to that of the
NHex2 analogue.
(18) For recent examples of quadrupolar dyes with large δTPA, see:
́
(a) Wilkinson, J. D.; Wicks, G.; Nowak-Krol, A.; Łukasiewicz, Ł. G.;
Wilson, C. J.; Drobizhev, M.; Rebane, A.; Gryko, D. T.; Anderson, H. L. J.
Mater. Chem. C 2014, 2, 6802. (b) Belfield, K. D.; Bondar, M. V.; Yao, S.;
Mikhailov, I. A.; Polikanov, V. S.; Przhonska, O. V. J. Phys. Chem. C 2014,
118, 13790. (c) Grzybowski, M.; Hugues, V.; Blanchard-Desce, M.;
Gryko, D. T. Chem.−Eur. J. 2014, 20, 12493.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
P. H. gratefully acknowledges the Alexander von Humboldt
foundation for a research fellowship. We thank Dr. M. Cigan
(Comenius University) for measuring fluorescence quantum
́
yields, and Dr. J. Kozısek (STU, Bratislava) for assistance with the
̌
̌
X-ray crystallographic determination. The authors also thank Dr.
S. Gerber (EPFL) for generously providing the laboratory
facilities for final characterizations.
́
̌
D
dx.doi.org/10.1021/ol503137p | Org. Lett. XXXX, XXX, XXX−XXX