ORGANIC
LETTERS
2013
Vol. 15, No. 22
5698–5701
Sustainable Flow Oppenauer Oxidation
of Secondary Benzylic Alcohols with
a Heterogeneous Zirconia Catalyst
Rajeev Chorghade,† Claudio Battilocchio,† Joel M. Hawkins,‡ and Steven V. Ley*,†
Innovative Technology Centre, Department of Chemistry, University of Cambridge,
Lensfield Road, CB2 1EW, Cambridge, U.K., and Pfizer Worldwide Research and
Development, Eastern Point Road, Groton, Connecticut 06340, United States
Received September 19, 2013
ABSTRACT
A flow chemistry process for the Oppenauer oxidation of benzylic secondary alcohols using partially hydrated zirconium oxide and a simple
carbonyl containing oxidant such as acetone, cyclohexanone, and neopentanal is reported. The heterogeneous oxidative system could be applied
to a wide range of functionalized alcoholsubstrates, allowing clean andfast deliveryof ketone products within a few minutes between 40 and 100°C.
The oxidative processing of alcohols plays a fundamen-
tal role in organic synthesis leading ultimately to many of
society’s functional materials.1 Selectivity during certain
oxidative reactions can be challenging to achieve, often
requiring expensive metal catalysis and inevitably leading
to further downstream processing problems. Although
major advances have been made, there is still room for
improvement. A case in point concerns the Oppenauer
† University of Cambridge.
‡ Pfizer Worldwide Research and Development.
(1) (a) Hudlicky, M. Oxidations in Organic Chemistry; American
Chemical Society: Washington, DC, 1990. (b) Sheldon, R. A.; Kochi, J. K.
Metal-Catalyzed Oxidations of Organic Compounds; Academic Press:
New York, 1981. (c) Smith, M. B.; March, J. March’s Advanced Organic
Chemistry: Reactions, Mechanisms, and Structure, 5th ed.; Wiley-
Interscience: New York: 2001; pp 1514ꢀ1517. (d) Ley, S. V.; Norman,
J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639–666. (e) Marko,
I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996,
274, 2044–2046. (f) Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Chelle-
Regnaut, I.; Gautier, A.; Brown, S. M.; Urch, C. J. J. Org. Chem. 1999,
64, 2433–2439. (g) Peterson, K. P.; Larock, R. C. J. Org. Chem. 1998, 63,
3185–3189. (h) Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Science
2000, 287, 1636–1639. (i) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.;
Kozee, M. A. J. Am. Chem. Soc. 2001, 123, 7188–7189. (j) ten Brink,
G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Adv. Synth. Catal. 2002, 344,
355–369. (k) Guram, A. S.; Bei, X.; Turner, H. W. Org. Lett. 2003, 5,
2485–2487. (l) Minisci, F.; Recupero, F.; Pedulli, G. F.; Lucarini, M. J.
Mol. Catal. A: Chem. 2003, 63, 204–205. (m) Meyer, S. D.; Schreiber,
S. L. J. Org. Chem. 1994, 59, 7549–7552. (n) Ohsugia, S.-I.; Nishidea, K.;
Oonob, K.; Okuyamab, K.; Fudesakaa, M.; Kodamaa, S.; Node, M.
Tetrahedron 2003, 59, 8393–8398. (o) Zhao, M.; Li, J.; Song, Z.;
Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J.
Tetrahedron Lett. 1998, 39, 5323–5326.
(2) For examples of Oppenauer oxidations, see: (a) Kloetzing, R. J.;
Krasovskiy, A.; Knochel, P. Chem.;Eur. J. 2007, 13, 215–227. (b)
ꢀ
ꢀ~
´
Mello, R.; Martınze-Ferrer, J.; Asensio, G.; Gonzalez-Nunez, M. E.
J. Org. Chem. 2007, 72, 9376–9378. (c) Graves,C. R.;Zeng, B.-S.;Nguyen,
S. T. J. Am. Chem. Soc. 2006, 128, 12596–12597. (d) Ooi, T.; Otshuka, H.;
Miura, T.; Ichikawa, H.; Maruoka, K. Org. Lett. 2002, 4, 2669–2672.
ꢁ
ꢀ
€
(e) Almeida, M. L. S.; Kocovsky, P.; Backvall, J.-E. J. Org. Chem. 1996, 61
(19), 6587–6590. (f) Suzuki, T.; Morita, K.; Tsuchida, M.; Hiroi, K. J. Org.
Chem. 2003, 68, 1601–1602. (g) Graves, C. R.; Campbell, E. J.; Nguyen, S. T.
Tetrahedron: Asymmetry 2005, 16, 3460–3468. (h) deeGraauw, C. F.; Peters,
J. A.; vanBekkum, H.; Huskens, J. Synthesis 1994, 1007–1017. (i) Wang, P.;
Shi, X.; Kataoka, K.; Maed, Y.; Kobiro, K. J. Supercrit. Fluids 2010, 52,
222–227. (j) Kamitanaka, T.; Ono, Y.; Morishima, H.; Hikida, T.; Matsuda,
T.; Harada, T. J. Supercrit. Fluids 2009, 49, 221–226. (k) Coleman, M. G.;
Brown, A. N.; Bolton, B. A.; Guan, H. Adv. Synth. Catal. 2010, 352, 967–
970. (l) Borzatta, V.; Capparella, E.; Chiappino, R.; Impala, D.; Poluzzi, E.;
Vaccari, A. Catal. Today 2009, 140, 112–116. (m) Du, W.; Wang, L.; Wu, P.;
Yu, Z. Chem.;Eur. J. 2012, 18, 11550–11554. (n) Csuk, R.; Vasileva, G.;
Barthel, A. Synthesis 2012, 44, 2840–2842. (o) Manzini, S.; Urbina-Blanco,
C. A.; Nolan, S. P. Organometallics 2013, 32, 660–664. (p) Liu, S. H.;
Chuah, G. K.; Jaenicke, S. J. Mol. Catal. A: Chem. 2004, 220,
267–274.
r
10.1021/ol4027107
Published on Web 10/25/2013
2013 American Chemical Society