Communication
Organic & Biomolecular Chemistry
Besides RiPPs produced by Ascomycetes such as ustiloxin B
and phomopsin A, plants also produce cyclopeptides that are
J. P. Klinman, O. P. Kuipers, A. J. Link, W. Liu,
M. A. Marahiel, D. A. Mitchell, G. N. Moll, B. S. Moore,
R. Müller, S. K. Nair, I. F. Nes, G. E. Norris, B. M. Olivera,
H. Onaka, M. L. Patchett, J. Piel, M. J. Reaney, S. Rebuffat,
R. P. Ross, H. G. Sahl, E. W. Schmidt, M. E. Selsted,
K. Severinov, B. Shen, K. Sivonen, L. Smith, T. Stein,
R. D. Süssmuth, J. R. Tagg, G. L. Tang, A. W. Truman,
J. C. Vederas, C. T. Walsh, J. D. Walton, S. C. Wenzel,
J. M. Willey and W. A. van der Donk, Nat. Prod. Rep., 2013,
30, 108–160.
1
4
structurally related to 1. Cyclopeptides, such as mauritine A,
1
4,19,20
21
sanjoinin A,
and ophiorrhisine A, possess 14-mem-
bered paracyclophane rings similar to that of 1 (Fig. S7†).
Although DUF3328 proteins do not exist in plants, other oxi-
dases that operate with a similar mechanism might be
involved in the biosynthesis of these compounds. Future
studies focusing on the mechanism of DUF3328 proteins may
contribute to studies of similar cyclopeptides from other
genera.
2 H. E. Hallen, H. Luo, J. S. Scott-Craig and J. D. Walton,
Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 19097–
19101.
Conclusions
3 S. Ramm, B. Krawczyk, A. Mühlenweg, A. Poch, E. Mösker
and R. D. Süssmuth, Angew. Chem., Int. Ed., 2017, 56, 9994–
In this study, we achieved the heterologous production of 1
and determined its absolute structure, showing that DUF3328
protein AprY was involved in formation of the characteristic
bicyclic structure. Together with our previous results on usti-
loxin B, the present findings established the common strategy
for macrocyclization of RiPPs produced by filamentous fungi.
In both cases, oxidative cyclization catalyzed by UstY homologs
accompanies a C–O bond formation between the phenol and
9
997.
4
5
6
N. S. van der Velden, N. Kälin, M. J. Helf, J. Piel,
M. F. Freeman and M. Künzler, Nat. Chem. Biol., 2017, 13,
833–835.
M. Umemura, N. Nagano, H. Koike, J. Kawano, T. Ishii,
Y. Miyamura, M. Kikuchi, K. Tamano, J. Yu, K. Shin-ya and
M. Machida, Fungal Genet. Biol., 2014, 68, 23–30.
M. Umemura, H. Koike, N. Nagano, T. Ishii, J. Kawano,
N. Yamane, I. Kozone, K. Horimoto, K. Shin-ya, K. Asai,
J. Yu, J. W. Bennett and M. Machida, PLoS One, 2013, 8,
e84028.
β
C of an amino acid moiety. Compared with the macrocycliza-
tion of ustiloxins, which requires three enzymes (two
DUF3328s and one tyrosinase), macrocyclization of 1 would be
more feasible for biochemical characterization, as it requires
only one or two enzymes (AprY and/or AprR). However, pre-
liminary attempts to reconstitute this enigmatic reaction were
unsuccessful. Further studies are currently underway in our
group.
7
8
9
T. Tsukui, N. Nagano, M. Umemura, T. Kumagai, G. Terai,
M. Machida and K. Asai, Bioinformatics, 2015, 31, 981–
985.
W. Ding, W. Q. Liu, Y. Jia, Y. Li, W. A. van der Donk and
Q. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 3521–
3
R. D. Johnson, G. A. Lane, A. Koulman, M. Cao, K. Fraser,
D. J. Fleetwood, C. R. Voisey, J. M. Dyer, J. Pratt,
M. Christensen, W. R. Simpson, G. T. Bryan and
L. J. Johnson, Fungal Genet. Biol., 2015, 85, 14–24.
526.
Conflicts of interest
There are no conflicts to declare.
1
1
0 N. Nagano, M. Umemura, M. Izumikawa, J. Kawano,
T. Ishii, M. Kikuchi, K. Tomii, T. Kumagai, A. Yoshimi,
M. Machida, K. Abe, K. Shin-Ya and K. Asai, Fungal Genet.
Biol., 2016, 86, 58–70.
1 Y. Ye, A. Minami, Y. Igarashi, M. Izumikawa, M. Umemura,
N. Nagano, M. Machida, T. Kawahara, K. Shin-Ya, K. Gomi
and H. Oikawa, Angew. Chem., Int. Ed., 2016, 55, 8072–
Acknowledgements
This work was financially supported by Grants-in-Aid for
Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology, Japan (JSPS KAKENHI Grants
(
(
15H01835 (H. O.), 16H06446 (A. M.), 17K15263 & 17H05425
T. O.), 17H05456 (M. U.)). We are grateful to DAICEL Corp. for
8075.
1
2 K. Tagami, A. Minami, R. Fujii, C. Liu, M. Tanaka,
K. Gomi, T. Dairi and H. Oikawa, ChemBioChem, 2014, 15,
the use of chiral column.
2076–2080.
1
3 T. Ugai, A. Minami, R. Fujii, M. Tanaka, H. Oguri, K. Gomi
and H. Oikawa, Chem. Commun., 2015, 51, 1878–1881.
References
1
P. G. Arnison, M. J. Bibb, G. Bierbaum, A. A. Bowers, 14 T. Gulder and P. S. Baran, Nat. Prod. Rep., 2012, 29, 899–
T. S. Bugni, G. Bulaj, J. A. Camarero, D. J. Campopiano, 934.
G. L. Challis, J. Clardy, P. D. Cotter, D. J. Craik, M. Dawson, 15 P. Marfey, Carlsberg Res. Commun., 1984, 49, 591–596.
E. Dittmann, S. Donadio, P. C. Dorrestein, K. D. Entian, 16 K. Fujii, Y. Ikai, T. Mayumi, H. Oka, M. Suzuki and
M. A. Fischbach, J. S. Garavelli, U. Göransson,
C. W. Gruber, D. H. Haft, T. K. Hemscheidt, C. Hertweck, 17 K. Fujii, Y. Ikai, H. Oka, M. Suzuki and K. Harada, Anal.
C. Hill, A. R. Horswill, M. Jaspars, W. L. Kelly, Chem., 1997, 69, 5146–5151.
K. Harada, Anal. Chem., 1997, 69, 3346–3352.
42 | Org. Biomol. Chem., 2019, 17, 39–43
This journal is © The Royal Society of Chemistry 2019