10.1002/anie.202005313
Angewandte Chemie International Edition
COMMUNICATION
[4]
a) M. Xie, X. Liu, X. Wu, Y. Cai, L. Lin, X. Feng, Angew. Chem. Int. Ed.
2013, 52, 5604-5607; b) R. Mose, G. Preegel, J. Larsen, S. Jakobsen, E.
H. Iversen, K. A. Jørgensen, Nat. Chem. 2017, 9, 487-492.
Furthermore, preliminary density functional theory (DFT) cal-
culations were performed to elucidate the origin of the observed
chemo- and periselectivity.[16] A simplified variant of optimal
ligand L8 (Ph and Cy groups were replaced with Me groups)
was used for the cycloadditions of both vinyl carbamate 1a
(PMB) and 1a’ (Ts). As shown in Figures S2 and S3 in Support-
ing Information, the oxidative addition of the Pd catalyst to sub-
strates 1a and 1a’ is the rate-determined step in each reaction
(for 1a, ∆G = 25.3 kcal/mol; for 1a', ∆G = 21.5 kcal/mol). Fur-
thermore, compared with the nucleophilic addition to the ketene
dipolarophile, it is much more difficult for resulting zwitterionic
intermediate PMP-II to release CO2 (for addition, ∆G = 12.5
kcal/mol; for CO2 release, ∆G = 17.9 kcal/mol), while in the case
of Ts-II, the opposite trend was observed by analyzing the dif-
ference in the activation energies. As illustrated Figure S4, com-
parisons of bond order (BO) and bond length (BL) confirmed that
it is more difficult to break the C-N bond to release CO2 from
[5]
[6]
M. Aginagalde, Y. Vara, A. Arrieta, R. Zangi, V. L. Cebolla, A. Delgado-
Camón, F. P. Cossío, J. Org. Chem. 2010, 75, 2776-2784.
a) Y. Chen, S. Ye, L. Jiao, Y. Liang, D. K. Sinha-Mahapatra, J. W.
Herndon, Z.-X. Yu, J. Am. Chem. Soc. 2007, 129, 10773-10785; b) P.
Roy, B. K. Ghorai, Tetrahedron Lett. 2011, 52, 5668-5671.
[7]
For more catalytic asymmetric [8+2] cycloadditions, see: a) S. Wang, C.
Rodríguez-Escrich, M. A. Pericàs, Angew. Chem. Int. Ed. 2017, 56,
15068-15072, and references therein; b) S. Wang, C. Rodríguez-Escrich,
M. Fianchini, F. Maseras, M. A. Pericàs, Org. Lett. 2019, 21, 3187-3192;
c) C. He, Z. Li, H. Zhou, J. Xu, Org. Lett. 2019, 21, 8022-8026; d) S.
Frankowski, A. Skrzyńska, Ł. Albrecht, Chem. Commun. 2019, 55,
11675-11678.
[8]
[9]
a) B. M. Trost, D. M. T. Chan, J. Am. Chem. Soc. 1979, 101, 6429-6432;
b) I. Shimizu, Y. Ohashi, J. Tsuji, Tetrahedron Lett. 1984, 25, 5183-5186.
Selected reviews on Pd-catalyzed dipolar cycloadditions: a) J. Tsuji,
Tetrahedron 1986, 42, 4361-4401; b) J. D. Weaver, A. Recio, III; A.
J.Grenning, J. A. Tunge, Chem. Rev. 2011, 111, 1846-1913 c) B. D. W.
Allen, C. P. Lakeland, J. P. A. Harrity, Chem. Eur. J. 2017, 23, 13830-
13857; d) N. De, E. J. Yoo, ACS Catal. 2018, 8, 48-58; e) W. Guo, J. E.
Gomez, A. Cristofol, J. Xie, A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57,
13735-13747; f) B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96,
395-422; g) Z. Lu, S. Ma, Angew. Chem. Int. Ed. 2008, 47, 258-297; h) N.
Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929-7967; i) J. Fu, , X. Huo,
B. Li, W. Zhang, Org. Biomol. Chem. 2017, 15, 9747-9759.
PMP-II (BOC-N = 1.1954; BLC-N = 1.44 Å) than from Ts-II (BOC-N
=
0.5844; BLC-N = 1.50 Å). In the case of substrate 1a, two possi-
bilities for the intramolecular allylic alkylation of the adduct of
PMP-II with ketene 2a were investigated: the linear selectivity
leading to the 10-membered cyclic product seems to be favored
over the branched selectivity leading to the 8-membered cyclic
product based on their activation energies (∆G = 5.3 kcal/mol vs
9.0 kcal/mol). These DFT results were in accordance with the
experimentally observed chemo- and periselectivity of these
higher-order cycloadditions of 1a and 1a'.
In conclusion, we have successfully developed the first Pd-
catalyzed asymmetric [8+2] dipolar cycloaddition of vinyl carba-
mates with photogenerated ketenes. This transformation pro-
vides a mild and highly selective protocol for accessing a wide
range of enantioenriched 10-membered monocyclic compounds
with chiral quaternary stereocenters. Moreover, preliminary DFT
calculations were performed to rationalize the high chemo- and
periselectivity. Although further analysis of the stereochemical
outcome is ongoing, this catalytic asymmetric [8+2] dipolar cy-
cloaddition provides a new platform for the higher-order cy-
cloaddition and enantioselective construction of medium-sized
monocyclic architectures.
[10] For selected examples with vinyl carbomates, see: a) J. G. Knight, S. W.
Ainge, A. M. Harm, S. J. Harwood, H. I. Maughan, D. R. Armour, D. M.
Hollinshead, A. A. Jaxa-Chamiec, J. Am. Chem. Soc. 2000, 122, 2944-
2945; b) C. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118-
8119; c) K. Ohmatsu, N. Imagawa, T. Ooi, Nat. Chem. 2014, 6, 47-51; d)
T.-R. Li, F. Tan, L.-Q. Lu, Y. Wei, Y.-N. Wang, Y.-Y. Liu, Q.-Q. Yang, J.-
R. Chen, D.-Q. Shi, W.-J. Xiao, Nat. Commun. 2014, 5, 5500-5509; e) C.
Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F.Glorius, J. Am.
Chem. Soc. 2016, 138, 7840-7843; f) L. A. Leth, F. Glaus, M. Meazza, L.
Fu, M. K. Thøgersen, E. A. Bitsch, K. A. Jørgensen, Angew. Chem. Int.
Ed. 2016, 55, 15272-15276; g) B. D. W. Allen, M. J. Connolly, J. P. A.
Harrity, Chem. Eur. J. 2016, 22, 13000-13003.
[11] a) Y. Wei, L.-Q. Lu, T.-R. Li, B. Feng, Q. Wang, W.-J. Xiao, H. Alper,
Angew. Chem. Int. Ed. 2016, 55, 2200-2204; b) Q. Wang, T.-R. Li, L.-Q.
Lu, M.-M. Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc. 2016, 138, 8360-
8363; c) M.-M. Li, Y. Wei, J. Liu, H-W. Chen, L.-Q. Lu, W.-J. Xiao, J. Am.
Chem. Soc. 2017, 139, 14707-14713; d) B. Feng, L.-Q. Lu, J.-R. Chen,
G.-Q. Feng, B.-Q. He, B. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2018, 57,
5888-5892; e) Y. Wei, S. Liu, M.-M. Li, Y. Li, Y. Lan, L.-Q. Lu, W.-J. Xiao,
J. Am. Chem. Soc. 2019, 141, 133-137; f) Y.-N. Wang, Q. Xiong, L.-Q.
Lu, Q.-L. Zhang, Y. Wang, Y. Lan, W.-J. Xiao, Angew. Chem. Int. Ed.
2019, 58, 11013-11017; g) M.-M. Zhang, Y.-N. Wang, B.-C. Wang, X.-W.
Chen, L.-Q. Lu, W.-J. Xiao. Nat. Commun. 2019, 10, 2716.
Acknowledgements
We are grateful to the National Science Foundation of China (No.
21822103, 21820102003, 21822303, 21772052, 21772053 and
91956201), the Program of Introducing Talents of Discipline to
Universities of China (111 Program, B17019), the Natural Sci-
ence Foundation of Hubei Province (2017AHB047) and the
International Joint Research Center for Intelligent Biosensing
Technology and Health for support of this research.
[12] F. Fontana, C. C. Chen, V. K. Aggarwal, Org. Lett. 2011, 13, 3454-3457.
[13] a) D. H. Paull, A. Weatherwax, T. Lectka, Tetrahedron 2009, 65, 6771-
6803; b) A. D. Allen, T. T. Tidwell, Chem. Rev.2013 113, 7287-7342; c)
S. Y. Lee, S. Neufeind, G. C. Fu,. J. Am. Chem. Soc. 2014, 136, 8899-
8902; d) C. M. Rasik, M.K. Brown, J. Am. Chem. Soc. 2013, 135, 1673-
1676; e) X. Hao, X. Liu, W. Li, F. Tan, Y. Chu, X. Zhao, L. Lin, X. Feng,
Org. Lett. 2014, 16, 134-137; f) X. Yang, S. Liu, S. Yu, L. Kong, Y. Lan,
X. Li, Org. Lett. 2018, 20, 2698-2701.
Keywords: [8+2] cycloaddition • medium-sized ring • palladium
[14] For selected work on photo-Wolff rearrangement, see: a) Y. S. M. Vaske,
M. E. Mahoney, J. P. Konopelski, D. L. Rogow, W. J. McDonald, J. Am.
Chem. Soc. 2010, 132, 11379-11385; b) B. Bernardim, A. M. Hardman-
Baldwinb, A. C. B. Burtoloso, RSC Adv. 2015, 5, 13311-13314,
catalysis • visible light
[1]
Selected reviews on higher-order cycloadditions: a) J. H. Rigby, Acc.
Chem. Res. 1993, 26, 579-585; b) T. A. Palazzo, R. Mose, K. A. Jørgen-
sen, Angew. Chem. Int. Ed. 2017, 56, 10033-10038; c) D. McLeod, M. K.
Thøgersen, N. I. Jessen, K. A. Jørgensen, C. S. Jamieson, X.-S Xue, K.
N. Houk, F. Liu, R. Hoffmann, Acc. Chem. Res. 2019, 52, 3488-3501.
W. E. Doering, D. W. Wiley, Tetrahedron 1960, 11, 183-198.
[15] a) K. W. Quasdorf, L. E. Overman, Nature 2014, 516, 181-191; b) Y.-Y.
Liu, S.-J. Han, W.-B. Liu, M. S. Brian, Acc. Chem. Res. 2015, 48, 740-
751.
[16] Please see the Supporting Information for the details of ligand effect,
solvent effect, experimental procedures and DFT calculations.
[2]
[3]
a) V. Nair, K. G. Abhilash, Top. Heterocycl. Chem. 2008, 13, 173-200; b)
V. Nair, K. G. Abhilash, Synlett. 2008, 3, 301-312.
[17] The structure of chiral cycloadduct 3ah was established through the X-
ray diffraction analysis CCDC 1960028).
[18] C. S. Dean, D. S. Tarbell, J. Org. Chem. 1971, 36, 1180-1183.
This article is protected by copyright. All rights reserved.