Page 5 of 6
ACS Catalysis
H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. Intramolecular CꢀH
(b) Hennessy, E. T.; Betley, T. A. Complex Nꢀheterocycle synthesis via
ironꢀcatalyzed, direct CꢀH bond amination. Science 2013, 340, 591ꢀ595.
(c) Stokes, B. J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver, T. G.
Intramolecular Fe(II)ꢀcatalyzed N–O or N–N bond formation from aryl
azides. Org. Lett. 2010, 12, 2884ꢀ2887. (d) Bonnamour, J.; Bolm, C.
amination reactions: Exploitation of the Rh2(II)ꢀcatalyzed decomposition
of azidoacrylates. J. Am. Chem. Soc. 2007, 129, 7500ꢀ7501. (f) Jordanꢀ
Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J.
Oxidative Pd(II)ꢀCatalyzed C−H Bond Amination to Carbazole at
Ambient Temperature. J. Am. Chem. Soc. 2008, 130, 16184ꢀ16186. For a
review see (g) Jiao, J.; Murakami, K.; Itami, K.Catalytic Methods for
Aromatic C–H Amination: An Ideal Strategy for NitrogenꢀBased
Functional Molecules. ACS Catal. 2016, 6, 610ꢀ633.
1
2
3
4
5
6
7
8
Iron(II) Triflate as
a Catalyst for the Synthesis of Indoles by
Intramolecular C–H Amination. Org. Lett. 2011, 13, 2012ꢀ2014. (e) Shen,
M.; Driver, T. G. Iron(II) BromideꢀCatalyzed Synthesis of
Benzimidazoles from Aryl Azides. Org. Lett. 2008, 10, 3367ꢀ3370. (f)
Wei, W.ꢀT.; Zhou, M.ꢀB.; Fan, J.ꢀH.; Liu, W.; Song, R.ꢀJ.; Liu, Y.; Hu,
M.; Xie, P.; Li, J.ꢀH. Synthesis of Oxindoles by Iron‐Catalyzed Oxidative
1,2‐Alkylarylation of Activated Alkenes with an Aryl C(sp2)ꢀH Bond and
a C(sp3)ꢀH Bond Adjacent to a Heteroatom. Angew. Chem., Int. Ed. 2013,
52, 3638ꢀ3641. (g) Alt, I. T.; Plietker, B.; Iron‐Catalyzed Intramolecular
C(sp2)−H Amination. Angew. Chem., Int. Ed. 2016, 55, 1519ꢀ1522. (h)
Cera, G.; Haven, T.; Ackermann, L. Ironꢀcatalyzed C–H/N–H activation
by triazole guidance: versatile alkyne annulation. Chem. Commun. 2017,
53, 6460ꢀ6463.
(3) Jones, K.; Cheeseman, M. D.; Linardopoulos, S.; Faisal, A.;
Barbeau, O. R.; Kalusa, A. Preparation of fused heterocyclic compounds
as antitumor agents. The Institute of Cancer Research Royal Cancer
Hospital, UK. (2014), 56pp. CODEN:PIXXD2; WO2014030001.
(4) Selected examples only (a) McDonald, S. L.; Hendrick, C. E.;
Wang, Q.Copper‐Catalyzed Electrophilic Amination of Heteroarenes and
Arenes by CꢀH Zincation. Angew. Chem., Int. Ed. 2014, 53, 4667ꢀ4670.
(b) Zhu, D.; Yang, G.; He, J.; Chu, L.; Chen, G.; Gong, W.; Chen, K.;
Eastgate, M. D.; Yu, J.ꢀQ. Ligand‐Promoted ortho‐CꢀH Amination with
Pd Catalysts. Angew. Chem., Int. Ed. 2015, 54, 2497ꢀ2500. (c) Yu, S.;
Wan, B.; Li, X. Rhodium(III)ꢀCatalyzed C–H Activation and Amidation
of Arenes Using NꢀArenesulfonated Imides as Amidating Reagents.Org.
Lett. 2013, 15, 3706ꢀ3709. (d) Allen, L. J.; Cabrera, P. J.; Lee, M.;
Sanford, M. S. NꢀAcyloxyphthalimides as Nitrogen Radical Precursors in
the Visible Light Photocatalyzed Room Temperature C–H Amination of
Arenes and Heteroarenes. J. Am. Chem. Soc. 2014, 136, 5607ꢀ5610. For
an overview see: (e) Berman, A. M.; Johnson, J. S.CopperꢀCatalyzed
Electrophilic Amination of Diorganozinc Reagents.J. Am. Chem. Soc.
2004, 126, 5680ꢀ5681. (f) Hendrick, C. E.; Wang, Q. Emerging
Developments Using Nitrogen–Heteroatom Bonds as Amination Reagents
in the Synthesis of Aminoarenes. J. Org. Chem. 2017, 82, 839ꢀ847 and
references cited therein. (g) Patureau, F. W.; Glorius, F. Oxidizing
Directing Groups Enable Efficient and Innovative CꢀH Activation
Reactions. Angew. Chem., Int. Ed. 2011, 50, 1977ꢀ1979. (h) For a review
on CꢀH activation at ambient temperature: see Gensch, T.; James, M. J.;
Dalton, T.; Glorius, F. Increasing Catalyst Efficiency in C−H Activation
Catalysis. Angew. Chem., Int. Ed. 2018, 57, 2296ꢀ2306.
(5) (a) Grohmann, C.; Wang, H.Rh[III]ꢀCatalyzed Direct C–H
Amination Using NꢀChloroamines at Room Temperature. Glorius, F. Org.
Lett. 2013, 15, 3014ꢀ3017. (b) Wang, X.; Gensch, T.; Lerchen, A.;
Daniliuc, C. G.; Glorius, F. Cp*Rh(III)/Bicyclic Olefin Cocatalyzed C–H
Bond Amidation by Intramolecular Amide Transfer. J. Am. Chem. Soc.
2017, 139, 6506ꢀ6512. (c) Patel, P.; Chang, S. NꢀSubstituted
Hydroxylamines as Synthetically Versatile Amino Sources in the Iridiumꢀ
Catalyzed Mild C–H Amidation Reaction. Org. Lett. 2014, 16, 3328ꢀ3331.
(d) Patel, P.; Chang, S. Cobalt(III)ꢀCatalyzed C–H Amidation of Arenes
using Acetoxycarbamates as Convenient Amino Sources under Mild
Conditions. ACS Catal. 2015, 5, 853ꢀ858. (e) For discussion on inner and
outer sphere pathways in CꢀH bond functionalization see: Dick, A. R.;
Sanford, M. S. Tetrahedron 2006, 62, 2439ꢀ2463. (f) Hong, S. Y.; Park,
Y.; Hwang, Y.; Kim, Y. B.; Baik, M.ꢀH.; Chang, S. Selective formation of
γꢀlactams via CꢀH amidation enabled by tailored iridium catalysts. Science
2018, 359, 1016ꢀ1021.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) Breslow, R.; Gellman, S. H. Intramolecular nitrene carbonꢀ
hydrogen insertions mediated by transitionꢀmetal complexes as nitrogen
analogs of cytochrome Pꢀ450 reactions. J. Am. Chem. Soc. 1983, 105,
6728ꢀ6729.
(11) Selected examples only (a) Mbuvi, H. M.; Woo, L. K. Catalytic
C−H Insertions Using Iron(III) Porphyrin Complexes. Organometallics
2008, 27, 637ꢀ645. For a review see: (b) Zhu, S.ꢀF.; Zhou, Q.ꢀL.Ironꢀ
catalyzed transformations of diazo compounds. National Science Review
2014, 1, 580ꢀ603. (c) Ma, C.; Xing, D.; Zhai, C.; Che, J.; Liu, S.; Wang,
J.; Hu, W. Iron porphyrinꢀcatalyzed threeꢀcomponent reaction of
ethyl diazoacetate with aliphatic amines and β,γꢀunsaturated αꢀketo esters.
Org. Lett. 2013, 15, 6140ꢀ6143. (d) Chen, Y.; Huang, L.; Zhang, X. P.
Acidꢀpromoted olefination of ketones by an iron(III) porphyrin complex.
Org. Lett. 2003, 5, 2493ꢀ2496. (e) Aviv, I.; Gross, Z. Iron(III) Corroles
and Porphyrins as Superior Catalysts for the Reactions of Diazoacetates
with Nitrogen‐ or Sulfur‐Containing Nucleophilic Substrates: Synthetic
Uses and Mechanistic Insights. Chem. ꢀ Eur. J. 2008, 14, 3995ꢀ4005. (f)
Griffin, J. R.; Wendell, C. I.; Garwin, J. A.; White, M. C. Catalytic C(sp3)ꢀ
H Alkylation via an Iron Carbene Intermediate. J. Am. Chem. Soc. 2017,
139, 13624ꢀ13627. (g) Singh, R.; Kolev, J. N.; Sutera, P. A.; Fasan,
R.Enzymatic C(sp3)ꢀH Amination: P450ꢀCatalyzed Conversion of
Carbonazidates into Oxazolidinones. ACS Catal. 2015, 5, 1685ꢀ1691.
(12) (a) Liu, Y.; Wei, J.; Che, C.ꢀM. [Fe(F20TPP)Cl] catalyzed
intramolecular C–N bond formation for alkaloid synthesis using aryl
azides as nitrogen source. Chem. Commun. 2010, 46, 6926ꢀ6928. (b) Liu,
Y.; Chen, G.ꢀQ.; Tse, C.ꢀW.; Guan, X.; Xu, Z.ꢀJ.; Huang, J.ꢀS.; Che, C.ꢀ
M. [Fe(F20TPP)Cl]ꢀCatalyzed Amination with Arylamines and {[Fe(F20
TPP)(NAr)](PhI=NAr)}+ꢁIntermediate Assessed by HighꢀResolution ESIꢀ
MS and DFT Calculations. Chem. ꢀ Asia. J. 2015, 10, 100ꢀ105. (c) Liu,
Y.; Che, C. M. [FeIII(F20ꢀtpp)Cl] Is an Effective Catalyst for Nitrene
Transfer Reactions and Amination of Saturated Hydrocarbons with
Sulfonyl and Aryl Azides as Nitrogen Source under Thermal and
MicrowaveꢀAssisted Conditions. Chem. ꢀ Eur. J. 2010, 16, 10494ꢀ10501.
(13) (a) Singh, R.; Nagesh, K.; Parameshwar, M. Rhodium(II)ꢀ
Catalyzed Undirected and Selective C(sp2)–H Aminationen Route to
Benzoxazolones. ACS Catal. 2016, 6, 6520ꢀ6524. (b) Cyclization of
analogous pꢀiodo, oꢀbromo and oꢀalkyne substituted carbamates were
unsuccessful under oxidative Rh2(II)/PhI(OAc)2 catalysis and were
unreported in ref. 13a. (c) Dimethyl substrates gives substantial side
products under strong oxidative reaction condition.
(6) (a) For a recent aryl CꢀH bond amination under acidic medium with
Rh2(II)see: Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma,
Z.; Kürti, L.; Falck, J. R.Dirhodiumꢀcatalyzed CꢀH arene amination using
hydroxylamines. Science 2016, 353, 1144ꢀ1147. (b) During the course of
the reviewprocess of this manuscript an intermolecular arene CꢀH
nitrenoid insertion using hydroxylamines appeared: Arai, K.; Ueda, Y.;
Morisaki K.; Furuta, T.; Sasamori, T.; Tokitoh N.; Kawabata,T.
Intermolecular chemoꢀ and regioselective aromatic C–H amination of
alkoxyarenes promoted by rhodium nitrenoids. Chem. Commun. 2018, 54,
2264ꢀ2267.
(14) (a) Jacques, P.; Pascal, C.; Evelina, C. 2(3H)ꢀBenzoxazolone and
Bioisosters as “Privileged Scaffold” in the Design of Pharmacological
Probes. Curr. Med. Chem. 2005, 12, 877ꢀ885 and references cited therein.
(b) Bach, A.; Pizzirani, D.; Realini, N.; Vozella, V.; Russo, D.; Penna, I.;
Melzig, L.; Scarpelli, R.; Piomelli, D.Benzoxazolone Carboxamides as
Potent Acid Ceramidase Inhibitors: Synthesis and Structure–Activity
Relationship (SAR) Studies. J. Med. Chem. 2015, 58, 9258ꢀ9272 and
references cited therein.
(7) For a seminal C(sp3)
—H bond amidation see: Lebel, H.; Huard, K.;
Lectard, S. NꢀTosyloxycarbamates as a Source of Metal Nitrenes:ꢁ
RhodiumꢀCatalyzed C−H Insertion and Aziridination Reactions. J. Am.
Chem. Soc. 2005, 127, 14198ꢀ14199.
(15) (a) Srinivas, B. T. V.; Rawat, V. S.; Sreedhar, B. Iron‐Catalyzed
Dioxygenation of Alkenes and Terminal Alkynes by using
(Diacetoxyiodo) benzene as Oxidant. Adv. Synth. Catal. 2015, 357, 3587ꢀ
3596. (b) MethꢀCohn, O.; Rhouati, S. Cyclisations of azidoformates.
Cyclisation of aryl azidoformates. J. Chem. Soc., Chem. Commun. 1981,
241ꢀ242. (c) For generation of radical nitrene under Coꢀporphyrin
catalysis see: Kuijpers, P. F.; Tiekink,M. J.; Breukelaar,W. B.; Broere, D.
L. J.; van Leest, N. P.; van der Vlugt, J. I.; Reek, J. N. H.; de Bruin,B;
CobaltꢀPorphyrinꢀCatalysed Intramolecular RingꢀClosing CꢀH Amination
(8) (a) Ng, K.ꢀH.; Chan, A. S. C.; Yu, W.ꢀY. PdꢀCatalyzed
Intermolecular orthoꢀC−H
Nosyloxycarbamate. J. Am. Chem. Soc. 2010, 132, 12862ꢀ12864. (b) John,
A.; Byun, J.; Nicholas, K. M. Copperꢀcatalyzed C(sp2)
H amidation of
Amidation
of
Anilides
by Nꢀ
—
unactivated arenes by Nꢀtosyloxycarbamates. Chem. Commun. 2013, 49,
10965ꢀ10967.
(9) Selected examples of Fe catalyst in Nꢀheterocycle synthesis; for a
review see: (a) Bauer, I.; Knölker, H.ꢀJ. Iron Catalysis in Organic
Synthesis. Chem. Rev. 2015, 115, 3170ꢀ3387 and references cited therein.
ACS Paragon Plus Environment