Catalyst-Free Suzuki-Type Coupling
Nolan, Org. Lett. 2005, 7, 1829–1832; g) C. Nájera, J. Gil-
Moltó, S. Karlström, Adv. Synth. Catal. 2004, 346, 1798–1811;
h) L. Botella, C. Nájera, J. Organomet. Chem. 2002, 663, 46–
57; i) D. A. Alonso, C. Nájera, M. C. Pacheco, J. Org. Chem.
2002, 67, 5588–5594; j) J. Cortés, M. Moreno-Mañas, R. Pleix-
ats, Eur. J. Org. Chem. 2000, 239–243.
phenylboronic acid [C6H5B(OH)2·3H2O; 352 mg, 2.0 mmol],
K2CO3 (277 mg, 2.0 mmol), and toluene (10 mL) were added into
a 25-mL round-bottomed flask equipped with a magnetic stirring
bar and reflux condenser. The reaction mixture was heated whilst
stirring at 90 °C for 3 h, and after cooling to room temperature,
was then evaporated to dryness. The crude product was purified by
column chromatography (silica gel; diethyl ether/n-hexane, 1:9) to
afford the title compound (270 mg, 70% yield) as a white solid. 1H
NMR (300 MHz, CDCl3, 25 °C, TMS): δ = 7.45–7.31 (m, 5 H),
6.18–6.05 (m, 1 H), 5.26–5.10 (m, 2 H), 3.52 (d, J = 6.6 Hz, 2 H)
ppm. The characterization data agree with the literature.[22] 13C
NMR (75 MHz, CDCl3, 25 °C, TMS): δ = 139.9, 137.4, 128.5,
128.3, 126.0, 115.7, 40.2 ppm. MS (EI): m/z = 118 [M]+, 103, 91,
77.
[6]
Allylic alcohols: a) Y. Kayaki, T. Koda, T. Ikariya, Eur. J. Org.
Chem. 2004, 4989–4993; b) M. L. Kantam, K. B. S. Kumar, B.
Sreedhar, J. Org. Chem. 2008, 73, 320–322; c) H. Tsukamoto,
T. Uchiyama, T. Suzuki, Y. Kondo, Org. Biomol. Chem. 2008,
6, 3005–3013; d) G. W. Kabalka, G. Dong, B. Venkataiah, Org.
Lett. 2003, 5, 893–895; allylic alcohol derivatives: e) Y. Makida,
H. Ohmiya, M. Sawamura, Chem. Asian J. 2011, 6, 410–414;
f) D. Li, T. Tanaka, H. Ohmiya, M. Sawamura, Org. Lett. 2010,
12, 3344–3347; g) H. Ohmiya, N. Yokokawa, M. Sawamura,
Org. Lett. 2010, 12, 2438–2440; h) F. C. Pigge, Synthesis 2010,
1745–1762; i) H. Ohmiya, Y. Makida, D. Li, M. Tanabe, M.
Sawamura, J. Am. Chem. Soc. 2010, 132, 879–889; j) T. Nishi-
kata, B. H. Lipshutz, J. Am. Chem. Soc. 2009, 131, 12103–
12105; k) H. Ohmiya, Y. Makida, T. Tanaka, M. Sawamura, J.
Am. Chem. Soc. 2008, 130, 17276–17277; l) T. Mino, K. Kaji-
wara, Y. Shirae, M. Sakamoto, T. Fujita, Synlett 2008, 2711–
2715; m) G. W. Kabalka, M. Al-Masum, Org. Lett. 2006, 8,
11–13; n) D. Bouyssi, V. Gerusz, G. Balme, Eur. J. Org. Chem.
2002, 2445–2448; o) K.-G. Chung, Y. Miyake, S. Uemura, J.
Chem. Soc. Perkin Trans. 1 2000, 15–18; p) H. Chen, M.-Z.
Deng, J. Organomet. Chem. 2000, 603, 189–193.
Supporting Information (see footnote on the first page of this arti-
cle): General methods, complete experimental details, and charac-
terization data for all compounds.
Acknowledgments
We thank Dr. W. Cairns (CNR-IDPA of Venice) for support in
ICP-MS analyses.
[7]
a) N. A. Bumagin, V. V. Bykov, I. P. Beletskaya, Bull. Acad. Sci.
USSR, Div. Chem. Sci. (Engl. Transl.) 1989, 38, 2206; b) T. I.
Wallow, B. M. Novak, J. Org. Chem. 1994, 59, 5034–5037; c)
M. T. Reetz, E. Westermann, Angew. Chem. 2000, 112, 170;
Angew. Chem. Int. Ed. 2000, 39, 165–168; d) R. B. Bedford,
M. E. Blake, C. P. Butts, D. Holder, Chem. Commun. 2003,
466–467.
a) D. G. Hall in Boronic Acids (Ed.: D. G. Hall), Wiley-VCH,
Weinheim, 2005, pp. 1–99; b) Y. Tokunaga, H. Ueno, Y. Shimo-
mura, T. Seo, Heterocycles 2002, 57, 787–790; c) A. L. Korich,
P. M. Iovine, Dalton Trans. 2010, 39, 1423–1431.
Selected references on the different reactivity of arylboronic
acids and boroxines: a) M. Storgaard, J. A. Ellman, Org. Synth.
2009, 86, 360–371; b) A. Antoft-Finch, T. Blackburn, V.
Snieckus, J. Am. Chem. Soc. 2009, 131, 17750–17752; c) L. J.
Gooßen, J. Paetzold, Adv. Synth. Catal. 2004, 346, 1665–1668;
d) T. Nishikata, Y. Yamamoto, N. Miyaura, Angew. Chem.
2003, 115, 2874; Angew. Chem. Int. Ed. 2003, 42, 2768–2770.
T. M. B. Islam, K. Yoshino, H. Nomura, T. Mizuno, A. Sasane,
Anal. Sci. 2002, 18, 363–366.
a) N. E. Leadbeater, M. Marco, Angew. Chem. 2003, 115, 1445;
Angew. Chem. Int. Ed. 2003, 42, 1407–1409; b) N. E. Lead-
beater, M. Marco, J. Org. Chem. 2003, 68, 5660–5667.
a) G. W. Kabalka, M.-L. Yao, S. Borella, Z. Wu, Chem. Com-
mun. 2005, 2492–2494; b) G. W. Kabalka, M.-L. Yao, S. Bor-
ella, Z. Wu, J.-H. Ju, T. Quick, J. Org. Chem. 2008, 73, 2668–
2673 and references cited therein.
J. Yan, M. Zhu, Z. Zhou, Eur. J. Org. Chem. 2006, 2060–2062.
R. K. Arvela, N. E. Leadbeater, M. S. Sangi, A. Williams, P.
Granados, R. D. Singer, J. Org. Chem. 2005, 70, 161–168.
R. K. Arvela, N. E. Leadbeater, T. L. Mack, C. M. Kormos,
Tetrahedron Lett. 2006, 47, 217–220.
Recent selected references: a) T. Tu, H. Mao, C. Herbert, M.
Xua, K. H. Dötz, Chem. Commun. 2010, 46, 7796–7798; b) J.-
i. Kuroda, K. Inamoto, K. Hiroya, T. Doi, Eur. J. Org. Chem.
2009, 2251–2261; c) Y. Zhou, Z. Xi, W. Chen, D. Wang, Orga-
nometallics 2008, 27, 5911–5920.
Selected references: a) J.-H. Li, D.-P. Wang, Eur. J. Org. Chem.
2006, 2063–2066; b) J. Mao, J. Guo, F. Fang, S.-J. Ji, Tetrahe-
dron 2008, 64, 3905–3911; c) M. B. Thathagar, J. Beckers, G.
Rothenberg, Adv. Synth. Catal. 2003, 345, 979–985; the Suzuki
reaction can be catalyzed by a combination of Pd and Cu: d)
J. Z. Deng, D. V. Paone, A. T. Ginnetti, H. Kurihara, S. D.
[1] Selected recent papers: a) M. Iwasaki, H. Yorimitsu, K. Osh-
ima, Bull. Chem. Soc. Jpn. 2009, 82, 249–253; b) F. Bakkali, S.
Averbeck, D. Averbeck, M. Idaomar, Food Chem. Toxicol.
2008, 46, 446–475; c) A. Demotie, I. J. S. Fairlamb, F.-J. Lu,
N. J. Shaw, P. A. Spencer, J. Southgate, Bioorg. Med. Chem.
Lett. 2004, 14, 2883–2887; d) B. M. Trost, O. R. Thiel, H.-C.
Tsui, J. Am. Chem. Soc. 2002, 124, 11616–11617.
[2] a) A. Scarso, M. Colladon, P. Sgarbossa, C. Santo, R. A. Mich-
elin, G. Strukul, Organometallics 2010, 29, 1487–1497; b) M. A.
Brown, M. A. Kerr, Tetrahedron Lett. 2001, 42, 983–985; c) A.
Fürstner, O. R. Thiel, G. Blanda, Org. Lett. 2000, 2, 3731–
3734.
[3] a) A. Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6722–6737; b)
N. Miyaura in Metal-Catalyzed Cross-Coupling Reactions
(Eds.: A. de Meijere, F. Diederich), 2nd ed., Wiley-VCH,
Weinheim, 2004, pp. 41–123; c) C. Torborg, M. Beller, Adv.
Synth. Catal. 2009, 351, 3027–3043; d) C. G. Fu, Acc. Chem.
Res. 2008, 41, 1555–1564; e) H. Doucet, Eur. J. Org. Chem.
2008, 2013–2030; f) F. Alonso, I. P. Beletskaya, M. Yus, Tetra-
hedron 2008, 64, 3047–3101; g) Y. Fall, H. Doucet, M. Santelli,
Appl. Organomet. Chem. 2008, 22, 503–509; h) R. Martin, S. L.
Buchwald, Acc. Chem. Res. 2008, 41, 1461–1473; i) L. Yin, J.
Liebscher, Chem. Rev. 2007, 107, 133–173; j) G. A. Molander,
N. Ellis, Acc. Chem. Res. 2007, 40, 275–286; k) J.-P. Corbet, G.
Mignani, Chem. Rev. 2006, 106, 2651–2710; l) F. Bellina, A.
Carpita, R. Rossi, Synthesis 2004, 2419–2440.
[4] Selected references: a) D. C. Gerbino, S. D. Mandolesi, H.-G.
Schmalz, J. C. Podestá, Eur. J. Org. Chem. 2009, 3964–3972; b)
E. Alacid, C. Nájera, J. Org. Chem. 2009, 74, 2321–2327; c) S.
Sebelius, V. J. Olsson, O. A. Wallner, K. J. Szabó, J. Am. Chem.
Soc. 2006, 128, 8150–8151; d) Y. Yamamoto, S. Takada, N.
Miyaura, Chem. Lett. 2006, 35, 704–705; e) Y. Yamamoto, S.
Takada, N. Miyaura, Chem. Lett. 2006, 35, 1368–1369; f) S.
Kotha, M. Behera, V. R. Shah, Synlett 2005, 1877–1880; g) A.
Fürstner, G. Seidel, Synlett 1998, 161–162.
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[5] Recent references: a) J. F. Civicos, D. A. Alonso, C. Nájera,
Adv. Synth. Catal. 2011, 353, 1683–1687; b) R. Ghosh, N. N.
Adarsh, A. Sarkar, J. Org. Chem. 2010, 75, 5320–5322; c) B.
Crociani, S. Antonaroli, M. Burattini, P. Paoli, P. Rossi, Dalton
Trans. 2010, 39, 3665–3672; d) E. Alacid, C. Nájera, J. Or-
ganomet. Chem. 2009, 694, 1658–1665; e) G. W. Kabalka, E.
Dadush, M. Al-Masum, Tetrahedron Lett. 2006, 47, 7459–
7461; f) R. Singh, M. S. Viciu, N. Kramareva, O. Navarro, S. P.
[17]
Eur. J. Org. Chem. 2012, 264–268
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
267