10.1002/anie.201810809
Angewandte Chemie International Edition
COMMUNICATION
The glass transition temperatures, however, are governed by the
TPAs about the xanthene unit: substitution at the meta-position
raises the Tg by 30 °C over those substituted at the para-position.
The synergistic effects of a positively shifted EHOMO and high glass
transition temperature in HTM-FX′ yielded a device power
conversion efficiency of >20.8%, which is commensurate with
current state-of-the-art PSCs. Electrochemical, photophysical and
structural findings were fully supported by computational analysis
of the frontier orbital and reorganization energies of the neutral
HTMs and spin density difference maps of cationic species,
thereby highlighting the role predictive tools can play in screening
future state-of-the-art HTMs. This set of design principles that
enables selective control of redox and mesoscopic properties of
asymmetric HTMs will be elaborated on in future studies in pursuit
of robust higher performance PSCs.
Table 2. Electrochemical and Hole-Transport Properties of HTMs.[a]
Voc
(V)
Jsc
(mA·cm-2)
PCE
(%)
Champion
PCE (%)
Compound
FF
Spiro-
OMeTAD
1.16(2)
21.9(3)
0.78(2)
19.7(5)
20.4
HTM-FX
HTM-F
HTM-X
1.16(1)
1.08(2)
0.88(11)
0.77(6)
1.17(1)
21.2(3)
14.7(9)
3.8(6)
0.74(2)
0.41(2)
0.32(2)
0.26(1)
0.78(2)
18.2(7)
6.5(5)
1.1(2)
0.2(1)
19.7(6)
19.5
7.0
1.3
HTM-X
′
1.4(1)
0.3
HTM-FX
′
21.7(3)
20.8
Keywords: hole-transport materials; perovskite solar cells; solar
energy; organic semiconductors; glass transition temperature
Statistical performance of 41 Spiro-OMeTAD devices, 24 HTM-FX devices,
44 HTM-FX′ devices, 8 HTM-F devices, and 4 devices for each HTM-X and
HTM-X′, is shown here.
[1]
M. Mesta, M. Carvelli, R. J. de Vries, H. van Eersel, J. J. M. van der Holst,
M. Schober, M. Furno, B. Lüssem, K. Leo, P. Loebl, et al., Nat. Mater.
2013, 12, 652–658.
The HTMs exhibit similar charge extraction kinetics and
effective photoluminescence quenching for all HTMs as revealed
by time-resolved and steady-state photoluminescence (PL)
measurements (Figure S17). Hole extraction from the perovskites
to each of the HTMs in this study was not found to be a limiting
factor, except for HTM-X′ which showed incomplete PL quenching
(Figure S17a). The HTMs exhibit similar charge extraction
kinetics between Spiro-OMeTAD, HTM-FX, and HTM-FX′ (Figure
S17b) though the initial PL decay rates in HTMs with only two TPA
moieties follow the trend of HTM-F > HTM-X > HTM-X′ (Figure
S17c).
[2]
[3]
[4]
[5]
[6]
X. Liang, K. Wang, R. Zhang, K. Li, X. Lu, K. Guo, H. Wang, Y. Miao, H.
Xu, Z. Wang, Dyes Pigm. 2017, 139, 764–771.
D. F. O’Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, M. E.
Thompson, Adv. Mater. 1998, 10, 1108–1112.
L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed Engl.
2016, 55, 14522–14545.
Z. H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T. M. Brown, R.
Jose, Nano Energy 2017, 34, 271–305.
J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Chem. Rev.
2015, 115, 2136–2173.
[7]
[8]
Y. Wang, T.-S. Su, H.-Y. Tsai, T.-C. Wei, Y. Chi, Sci. Rep. 2017, 7, 7859.
L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K.
Leo, APL Materials 2014, 2, 081503.
PSCs containing HTM-F, HTM-X, and HTM-X′ all generated
low PCE values. This observation is attributed to the low hole
mobilities (Figure 3a) precluding effective transport of carriers
through the HTM layers. HTM-FX results in PCEs that are lower
than Spiro-OMeTAD and the best device yielded a PCE of 19.5%
[9]
A. Krishna, D. Sabba, J. Yin, A. Bruno, L. J. Antila, C. Soci, S. Mhaisalkar,
A. C. Grimsdale, J. Mater. Chem. A Mater. Energy Sustain. 2016, 4,
8750–8754.
[10] J. Xu, O. Voznyy, R. Comin, X. Gong, G. Walters, M. Liu, P. Kanjanaboos,
X. Lan, E. H. Sargent, Adv. Mater. 2016, 28, 2807–2815.
[11] C. Kou, S. Feng, H. Li, W. Li, D. Li, Q. Meng, Z. Bo, ACS Appl. Mater.
Interfaces 2017, 9, 43855–43860.
which is comparable to
a
previous report.[22] HTM-FX′
outperformed HTM-FX (20.8% vs 19.5%, respectively) and the
performance enhancement can be attributed to the 3-fold higher
hole mobility imparted by the change of TPA substitution pattern
on the xanthene group (4.8 vs 1.4 × 10-4 cm2V-1s-1, respectively).
HTM-FX′ produced a device performance that rivals that of Spiro-
OMeTAD. PSCs containing HTM-FX′ exhibit excellent
reproducibility, as indicated by the narrow PCE distribution over
44 devices (Figure 3c). Moreover, PSCs containing HTM-FX′ also
show negligible hysteresis in the J-V measurements (Figure 3d
and Figure S16a). These results highlight the meta-substitution
of the xanthene groups to be an important handle for achieving
high-efficiency PSCs.
Breaking the symmetric core of Spiro-OMeTAD by replacing
one of the two fluorene units with a xanthene unit to form HTM-
FX[22] enabled us to experimentally resolve how the positions of
TPA groups about the core affect the redox properties and glass
transition temperatures of HTMs relevant to high efficiency PSCs.
TPA groups positioned on the highly conjugated fluorene moiety
renders the HTM easier to oxidize, which, in turn, increases the
free energy change for hole-extraction from the perovskite layer.
[12] Y. Wang, S. Zhang, J. Wu, K. Liu, D. Li, Q. Meng, G. Zhu, ACS Appl.
Mater. Interfaces 2017, 9, 43688–43695.
[13] P. Agarwala, D. Kabra, J. Mater. Chem. A Mater. Energy Sustain. 2017,
5, 1348–1373.
[14] K. Rakstys, M. Saliba, P. Gao, P. Gratia, E. Kamarauskas, S. Paek, V.
Jankauskas, M. K. Nazeeruddin, Angew. Chem. Int. Ed Engl. 2016, 55,
7464–7468.
[15] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H.
Spreitzer, M. Grätzel, Nature 1998, 395, 583–585.
[16] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A.
Abate, F. Giordano, J.-P. Correa Baena, et al., Sci. Adv. 2016, 2,
e1501170.
[17] H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. García de Arquer, J. Z. Fan, R.
Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, et al., Science 2017,
355, 722–726.
[18] N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee, S. I. Seok, J.
Am. Chem. Soc. 2014, 136, 7837–7840.
[19] R. Pudzich, T. Fuhrmann-Lieker, J. Salbeck, in Emissive Materials
Nanomaterials, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp.
83–142.
This article is protected by copyright. All rights reserved.