6364
J. Am. Chem. Soc. 2000, 122, 6364-6370
Optical Switching of Ion-Dipole Interactions in a Gramicidin
Channel Analogue
Vitali Borisenko, Darcy C. Burns, Zhihua Zhang, and G. Andrew Woolley*
Contribution from the Department of Chemistry, UniVersity of Toronto, 80 St. George Street,
Toronto, Ontario M5S 3H6, Canada
ReceiVed February 29, 2000
Abstract: Optical control of ion channel gating could permit the functional manipulation of excitable cells.
We wished to examine the feasibility of using optical switching of ion-dipole interactions as a means of
switching ion flux in channels. We prepared an analogue of the ion channel gramicidin A in which an azobenzene
side chain was substituted for a valine side chain at position 1. The dipole moment of the azobenzene group
can be reversibly switched between approximately 3 and 0 D by cis-trans photoisomerization. The observed
conductance properties of the modified channels can be understood in terms of (switchable) ion-dipole
interactions that control the height of the central barrier for Cs+ and Na+ movement through the pore. The
predictable behavior of the system implies that larger dipole changes or changes closer to the central axis of
the pore might effect complete gating.
Introduction
relative simplicity makes chemical modification straightforward.
Gramicidin dimers are formed by the association of two single-
stranded â-helices, joined by intermolecular hydrogen bonds
at their amino termini.19,20 Several photosensitive gramicidin
analogues have been synthesized.13,16,17,21 Each of these em-
ployed an azobenzene derivative as the photochromic unit. This
group is robust and undergoes reversible cis-trans photo-
isomerization without significant photobleaching.22 The wave-
lengths required (>330 nm) do not cause photodegradation of
gramicidin Trp residues.23
Optical methods have demonstrated utility for the investiga-
tion of physicochemical properties of biochemical systems.1-7
A photoregulated ion channel would extend the range of these
investigations by enabling the direct manipulation of cellular
excitability using light. A photoregulated ion transport system
might, in principle,8-10 involve photoregulation of ion-binding
sites,11 positioning of channel-forming molecules in the mem-
brane,12,13 creation of polar sites within the membrane,14 or direct
alteration of the properties of ion channels.10,15-17
Optical modulation of the insertion of a gramicidin into
bilayers has been reported with a C-terminal azobenzene-based
modification.13 Covalently linked dimers of gramicidin have also
been reported, in which an azobenzene group forms part of the
linker.16,17 Although effects of photoisomerization on channel
activity were observed in these cases, a straightforward inter-
pretation of activity in structural terms was not possible.
Previously, we reported the modification of the C-terminal end
of gramicidin with an alkylamino-azobenzene moiety. This
derivative showed photosensitive blocking of the entrance and
exit of the gramicidin channel.21,24 Although the photomodu-
lation could be understood in structural terms, significant
redesign of the C-terminus of the peptide would be required
for very large changes in conductance to be obtained.
The gramicidin channel is an attractive target for rational
design because of its well-defined structural and functional
properties under a wide range of conditions.18 In addition, its
* Corresponding author. Tel./fax: 416-978-0675. E-mail: awoolley@
chem.utoronto.ca.
(1) Willner, I.; Rubin, I. Angew. Chem., Int. Ed. Engl. 1996, 35, 367-
385.
(2) Ulysse, L.; Cubillos, J.; Chmielewski, J. J. Am. Chem. Soc. 1995,
117, 8466-8467.
(3) Kumita, J. R.; Smart, O. S.; Woolley, G. A. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 3803-3808.
(4) Adams, S. R.; Tsien, R. Y. Annu. ReV. Physiol. 1993, 55, 755-784.
(5) Nerbonne, J. M. Curr. Opin. Neurobiol. 1996, 6, 379-386.
(6) Politz, J. C. Trends Cell. Biol. 1999, 9, 284-287.
(7) Curley, K.; Lawrence, D. S. Curr Opin. Chem. Biol. 1999, 3, 84-
88.
(8) Fyles, T. M.; Suresh, V. V. Can. J. Chem. 1994, 72, 1246-1253.
(9) Fyles, T. M. Curr. Opin. Chem. Biol. 1997, 1, 497-505.
(10) Bayley, H. Curr. Opin. Biotechnol. 1999, 10, 94-103.
(11) Shinkai, S. In Bioorganic Chemistry Frontiers; Dugas, H., Ed.;
Springer-Verlag: Berlin, 1990; Vol. 1, pp 161-195.
(12) Ueda, T.; Nagamine, K.; Kimura, S.; Imanishi, Y. J. Chem. Soc.,
Perkin Trans. 2 1995, 365-368.
In view of recent results supporting an important role for ion-
dipole interactions in controlling conductance in gramicidin
channels25-29 and in cation channels generally,30,31 we wished
(19) Andersen, O. S. Annu. ReV. Physiol. 1984, 46, 531-548.
(20) Woolley, G. A.; Wallace, B. A. J. Membr. Biol. 1992, 129, 109-
136.
(21) Lien, L.; Jaikaran, D. C. J.; Zhang, Z.; Woolley, G. A. J. Am. Chem.
Soc. 1996, 118, 12222-12223.
(22) Rau, H. In Photochromism. Molecules and Systems; Durr, H., Bouas-
Laurent, H., Eds.; Elsevier: Amsterdam, 1990; pp 165-192.
(23) Busath, D. D.; Hayon, E. Biochim. Biophys. Acta 1988, 944, 73-
78.
(24) Woolley, G. A.; Zunic, V.; Karanicolas, J.; Jaikaran, A. S.; Starostin,
A. V. Biophys. J. 1997, 73, 2465-2475.
(25) Andersen, O. S.; Greathouse, D. V.; Providence, L. L.; Becker, M.
D.; Koeppe, R. E., II. J. Am. Chem. Soc. 1998, 120, 5142-5146.
(13) Osman, P.; Martin, S.; Milojevic, D.; Tansey, C.; Separovic, F.
Langmuir 1998, 14, 4238-4242.
(14) Anzai, J.; Osa, T. Tetrahedron 1994, 50, 4039-4070.
(15) Chang, C. Y.; Niblack, B.; Walker, B.; Bayley, H. Chem. Biol. 1995,
2, 391-400.
(16) Stankovic, C. J.; Heinemann, S. H.; Schreiber, S. L. Biochim.
Biophys. Acta 1991, 1061, 163-170.
(17) Sukhanov, S. V.; Ivanov, B. B.; Orekhov, S. Y.; Barsukov, L. I.;
Arseniev, A. S. Biol. Membr. 1993, 10, 535-542 (in Russian).
(18) Koeppe II, R. E.; Andersen, O. S. Annu. ReV. Biophys. Biomol.
Struct. 1996, 25, 231-258.
10.1021/ja000736w CCC: $19.00 © 2000 American Chemical Society
Published on Web 06/22/2000