10.1002/asia.201601499
Chemistry - An Asian Journal
COMMUNICATION
equivalent of parent hydrazine, we were able to obtain the
corresponding azines 7a–c in good yields (Table 4) after a
simple purification by means of chromatographic column.
Acknowledgements
We are grateful to the CONACYT (project 181488) and
PRODEP (UAM-PTC-475) for financial support. D.M.E., G.N.S.,
D.A.B., A.A.H., and R.S.S. wish to acknowledge the SNI for the
distinction and the stipend receivedAcknowledgements Text.
Table 4. (Bis)hydrohydrazination of terminal alkynes with hydrazine.
(4c, 3%mol)
N
R
+
H2N-NH2
2 R
R
N
KB(C6F5)4
Keywords: Mesoionic carbenes •gold(I) •gold(III) •
hydrohydrazination • oxidation
Toluene, 80 oC, 12 h
7a-c
MeO
N
[1]
(a) A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471. (b) M.
Rudolph, A. S. K. Hashmi, Chem. Soc. Rev., 2012, 41, 2448. (c) J. Xiao,
X. Li, Angew. Chem. Int. Ed., 2011, 50, 7226. (d) D. J. Gorin, B. D.
Shery, F. D. Toste, Chem. Rev. 2008, 108, 3351. (e) Z. Li, C. Brouwer,
C. He, Chem. Rev. 2008, 108, 3239. (f) A. Fürstner, P. W. Davies,
Angew. Chem. Int. Ed., 2007, 46, 3410. (g) A. S. K. Hashmi, Chem.
Rev., 2007, 107, 3180.
N
N
N
7a
92%
7b
OMe
86%
Br
N
N
[2]
(a) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem.
Int. Ed. 2000, 39, 2285. (b) A. S. K. Hashmi, T. M. Frost, J. W. Bats, J.
Am. Chem. Soc. 2000, 122, 11553.
7c
Br
82%
[3]
[4]
M. C. Blanco J, F. Rominger, M. M. Pereira, R. M. B. Carrilho, S. A. C.
Carabineiro, A. S. K. Hashmi, Chem. Commun. 2014, 50, 4937.
(a) C. Lothschütz, T. Wurm, A. Zeiler, A. F. v. Falkenhausen, M.
Rudolph, F. Rominger, A. S. K. Hashmi, Chem. Asian J., 2016, 11, 342.
(b) M. C. Blanco J., C. R. N. Böhling, J. M. Serrano-Becerra, A. S. K.
Hashmi, Angew. Chem. Int. Ed., 2013, 52, 7963. (c) A. S. K. Hashmi, Y.
Yu, F. Rominger, Organometallics, 2012, 31, 895. (d) A. S. K. Hashmi,
C. Lothschütz, K. Graf, T. Häffner, A. Schuster, F. Rominger, Adv.
Synth. Catal. 2011, 353, 1407. (e) A. Corma, A. eyva- rez, M. J.
Sabater, Chem. Rev., 2011, 111, 1657. (f) N. Krause, C. Winter, Chem.
Rev., 2011, 111, 1994. (g) C. Concellón, N. Duguet, A. D. Smith, Adv.
Synth. Catal., 2009, 351, 3001. (h) N. T. Patil, Y. Yamamoto, Chem.
Rev. 2008, 108, 3395. (i) N. Marion, S. P. Nolan, Chem. Soc. Rev.,
2008, 37, 1776. (j) F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed.,
2008, 47, 3122. (k) F. Glorius, in N-Heterocyclic Carbenes in Transition
Metal Catalysis, Springer-Verlag, Berlin, 2007, pp. 1-20. (l) Perez, P. J.,
Díaz-Requejo, M. M, in N-Heterocyclic Carbenes in Synthesis, (Ed.; S.
P. Nolan) Wiley-VCH, Weinheim, Germany, 2006, pp. 257-274.
See for example: (a) Y.-M. Wang, A. D. Lackner, F. D. Toste, Acc.
Chem. Res., 2014, 47, 889. (b) C. Wang, Y. Chen, X. Xie, J. Liu, Y. Liu,
J. Org. Chem., 2012, 77, 1915. (c) P. Nun, J. D. Egbert, M.-J. Oliva-
Madrid, S. P. Nolan, Chem. Eur. J., 2012, 18, 1064. (d) V. L pez-
Carrillo, N. Huguet, A. Mosquera, A. M. Echavarren, Chem. Eur. J.,
2011, 17, 10972. (e) X. Zeng, R. Kinjo, B. Donnadieu, G. Bertrand,
Angew. Chem. Int. Ed., 2010, 49, 942. (b) A. S. K. Hashmi, A. M.
Schuster, F. Rominger, Angew. Chem., Int. Ed., 2009, 48, 8247.
(a) L. Huang, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem.
Ed., 2016, 55, 4080. (b) L. Huang, F. Rominger, M. Rudolph, A. S. K.
Hashmi, Chem. Commun., 2016, 52, 6435. (c) C.-Y. Wu, T. Horibe, C.
B. Jacobsen, F. D. Toste, Nature, 2015, 517, 449. (d) J. Dinda, T.
Samanta, A. Nandy, K. Saha, S. K. Das Seth, S. K. Chattopadhyay, C.
W. Bielawski, New J. Chem., 2014, 38, 1218. (e) B. Jacques, J. Kirsch,
P. de Fremont, P. Braunstein, Organometallics, 2012, 31, 4653. (f) W.
Liu, K. Bensdorf, M. Proetto, U. Abram, A. Hagenbach, R. J. Gust, J.
Med. Chem., 2011, 54, 8605. (g) C. Topf, C. Hirtenlehner, M. Zabel, M.
List, M. Fleck, U. Monkowius, Organometallics, 2011, 30, 2755. (h) M.
Pazicky, A. Loos, M. J. Ferreira, D. Serra, N. Vinokurov, F. Rominger,
C. Jäkel, A. S. K. Hashmi, M. Limbach, Organometallics, 2010, 29,
4448.
Reaction conditions: Alkyne (1.0 mmol), hydrazine (0.49 mmol), toluene 3 mL.
Isolated yields.
The possibility of formation of heterogeneous gold as the active
catalyst, prompted us to perform mercury poisoning tests in the
formation 6a (ESI-Figure S1).18 Hence, the formation process of
6a was disturbed by the addition of excess of elemental mercury
to the reaction mixture using the precatalysts 4c and 5c.
According to GC monitoring during reaction time, no significant
changes in the product yields were noticed (Fig S1-ESI). These
results suggest that at 80oC the catalytic conversions are
performed essentially by molecular species. Further analysis of
the gold catalysts nature were tested by following Crabtree´s
test for the selective homogeneous catalysts poisoning by the
addition of slight excess of dibenzo[a,e]cyclooctatriene (DCT).19
In this case the activity for the pre-catalysts 4c and 5c remains
similar until the fourth hour of reaction, however as the time
progresses and the DCT start the inhibition process, the
conversion to products decreases drastically to 46% (for 4c) and
27% (for 5c) (Fig S2-ESI). These conversion data complements
well the mercury poisoning tests, suggesting the homogeneous
nature of the gold catalysts at the process reaction condition.
In summary, we report the facile preparation of a series of
MIC(CH2)n·AuI complexes by the one-pot reaction of the
triazolium precursors [MIC(CH2)n-H+]I- (n = 1-3) with potassium
hydride (KHMDS) and AuCl(SMe2). Visible light exposure of
chloroform solutions of the latter gold(I) complexes results in a
spontaneous disproportionation process rendering gold(III)
complexes of the type [{MIC(CH2)n}2·AuI2]+I-. All complexes have
been characterized in solution and solid state and both the Au(I)
and Au(III) complex series were tested in the catalytic
hydrohydrazination of terminal alkynes using hydrazine as
nitrogen source. From the catalytic conversions, we can observe
that although both the Au(I) and Au(III) complexes series are
successful to generate the hydrohydrazination products under
mild conditions, the combination of complexes 4c with KB(C6F5)4
as additive, display the best performance of the series. Further
exploration of the catalytic potential of complexes 4 and 5 is
currently being explored in our laboratory.
[5]
[6]
[7]
S. G. Bratsch, J. Chem. Phys. Ref. Data, 1989, 18, 1.
[8] A. S. K. Hashmi, M. C. Blanco, D. Fischer, J. W. Bats, Eur. J. Org. Chem.
2006, 1387.
[9]
(a) M. Joost, L. Estevez, K. Miqueu, A. Amgoune and D. Bourissou,
Angew. Chem., Int. Ed. 2015, 54, 5236. (b) J. Guenther, S. Mallet-
Ladeira, L. Estevez, K. Miqueu, A. Amgoune, D. Bourissou, J. Am.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.