10.1002/anie.201813191
Angewandte Chemie International Edition
COMMUNICATION
Int. Ed. 2009, 48, 9792–9826; l) R. G. Bergman, Nature 2007, 446,
391–393.
[2]
a) P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L.
Ackermann,
Chem.
Rev.
2019,
119,
DOI:
10.1021/acs.chemrev.8b00507; b) Y. Hu, B. Zhou, C. Wang, Acc.
Chem. Res. 2018, 51, 816–827; c) T. Yoshino, S. Matsunaga, Adv.
Synth. Catal. 2017, 359, 1245–1262; d) D. Wei, X. Zhu, J.-L. Niu,
M.-P. Song, ChemCatChem 2016, 8, 1242–1263; e) W. Liu, L.
Ackermann, ACS Catal. 2016, 6, 3743–3752; f) H. Koji, M. Miura,
Chem. Lett. 2015, 44, 868–873; g) K. Gao, N. Yoshikai, Acc.
Chem. Res. 2014, 47, 1208–1219; h) A. A. Kulkarni, O. Daugulis,
Synthesis 2009, 4087–4109.
[3]
[4]
a) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem.
Rev. 2017, 117, 8908–8976; b) K. Liao, T. C. Pickel, V. Boyarskikh,
J. Bacsa, D. G. Musaev, H. M. L. Davies, Nature 2017, 551, 609–
613; c) D.-W. Gao, Q. Gu, C. Zheng, S.-L. You, Acc. Chem. Res.
2017, 50, 351–365; d) S. Motevalli, Y. Sokeirik, A. Ghanem, Eur. J.
Org. Chem. 2016, 1459–1475; e) C. Zheng, S.-L. You, RSC
Advances 2014, 4, 6173–6214; f) H. M. L. Davies, J. R. Manning,
Nature 2008, 451, 417–424.
For cobalt(III)-catalyzed C–H activation, see: a) F. Pesciaioli, U.
Dhawa, R. Yin, J. C. A. Oliveira, M. John, L. Ackermann, Angew.
Chem. Int. Ed. 2018, 57, 15425–15429. For low-valent cobalt-
catalyzed C–H activation, see: b) J. Yang, A. Rérat, Y. J. Lim, C.
Gosmini, N. Yoshikai, Angew. Chem. Int. Ed. 2017, 56, 2449–
2453; c) P.-S. Lee, N. Yoshikai, Org. Lett. 2015, 17, 22–25; d) J.
Yang, N. Yoshikai, J. Am. Chem. Soc. 2014, 136, 16748–16751.
For iron-catalyzed C–H activation, see: e) J. Loup, D. Zell, J. C. A.
Oliveira, H. Keil, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed.
2017, 56, 14197–14201.
[5]
a) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010,
110, 624–655; b) J. C. Lewis, R. G. Bergman, J. A. Ellman, Acc.
Chem. Res. 2008, 41, 1013–1025; c) J. C. Rech, M. Yato, D.
Duckett, B. Ember, P. V. LoGrasso, R. G. Bergman, J. A. Ellman, J.
Am. Chem. Soc. 2007, 129, 490–491; d) K. L. Tan, A. Vasudevan,
R. G. Bergman, J. A. Ellman, A. J. Souers, Org. Lett. 2003, 5,
2131–2134; e) K. L. Tan, R. G. Bergman, J. A. Ellman, J. Am.
Chem. Soc. 2002, 124, 3202–3203; f) K. L. Tan, R. G. Bergman, J.
A. Ellman, J. Am. Chem. Soc. 2001, 123, 2685–2686.
Scheme 7. Plausible catalytic cycle.
[6]
[7]
A. S. Tsai, R. M. Wilson, H. Harada, R. G. Bergman, J. A. Ellman,
Chem. Commun. 2009, 3910–3912.
In conclusion, we have reported on the first nickel-catalyzed
enantioselective endo-alkene-hydroarylation via organometallic
aluminum-free C–H activation. Thus, a novel nickel/JoSPOphos
manifold enabled C–H activation with high efficacy and
outstanding levels of enantiocontrol. The Earth-abundant nickel
catalysis did not require pyrophoric organoaluminum additives,
and detailed mechanistic studies provided strong support for a
facile LLHT C–H activation with first order kinetics.
Representative examples: a) Y. Schramm, M. Takeuchi, K. Semba,
Y. Nakao, J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 12215–
12218; b) W.-C. Lee, C.-H. Chen, C.-Y. Liu, M.-S. Yu, Y.-H. Lin, T.-
G. Ong, Chem. Commun. 2015, 51, 17104–17107; c) R. Tamura,
Y. Yamada, Y. Nakao, T. Hiyama, Angew. Chem. Int. Ed. 2012, 51,
5679–5682; d) Y. Nakao, N. Kashihara, K. S. Kanyiva, T. Hiyama,
Angew. Chem. Int. Ed. 2010, 49, 4451–4454; e) C.-C. Tsai, W.-C.
Shih, C.-H. Fang, C.-Y. Li, T.-G. Ong, G. P. A. Yap, J. Am. Chem.
Soc. 2010, 132, 11887–11889; f) Y. Nakao, H. Idei, K. S. Kanyiva,
T. Hiyama, J. Am. Chem. Soc. 2009, 131, 15996–15997. Selected
reviews in: g) L. Ackermann, T. B. Gunnoe, L. G. Habgood,
Catalytic Hydroarylation of Carbon-Carbon Multiple Bonds, Wiley-
VCH, Weinheim, Germany, 2018; h) Y. Nakao, Chem. Rec. 2011,
11, 242–251.
Acknowledgements
[8]
[9]
a) Y.-X. Wang, S.-L. Qi, Y.-X. Luan, X.-W. Han, S. Wang, H. Chen,
M. Ye, J. Am. Chem. Soc. 2018, 140, 5360–5364; b) J. Diesel, A.
M. Finogenova, N. Cramer, J. Am. Chem. Soc. 2018, 140, 4489–
4493; c) P. A. Donets, N. Cramer, Angew. Chem. Int. Ed. 2015, 54,
633–637; d) P. A. Donets, N. Cramer, J. Am. Chem. Soc. 2013,
135, 11772–11775; e) A. T. Normand, S. K. Yen, H. V. Huynh, T.
S. A. Hor, K. J. Cavell, Organometallics 2008, 27, 3153–3160.
For selected recent examples, see: a) S.-K. Zhang, R. C. Samanta,
N. Sauermann, L. Ackermann, Chem. Eur. J. 2018, 24,
DOI:10.1002/chem.201805441; b) Z. Ruan, S.-K. Zhang, C. Zhu, P.
N. Ruth, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56,
2045–2049; c) S. Nakanowatari, T. Müller, J. C. A. Oliveira, L.
Ackermann, Angew. Chem. Int. Ed. 2017, 56, 15891–15895; d) Z.
Ruan, S. Lackner, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55,
3153–3157; e) Z. Ruan, S. Lackner, L. Ackermann, ACS Catal.
2016, 6, 4690–4693; f) W. Song, S. Lackner, L. Ackermann,
Angew. Chem. Int. Ed. 2014, 53, 2477–2480.
For selected examples, see: a) D. Zell, S. Warratz, D. Gelman, S.
J. Garden, L. Ackermann, Chem. Eur. J. 2016, 22, 1248–1252; b)
L. Ackermann, A. Althammer, R. Born, Angew. Chem. Int. Ed.
2006, 45, 2619–2622; c) L. Ackermann, Org. Lett. 2005, 7, 3123–
3125.
D. Song, S. Ma, ChemMedChem 2016, 11, 646–659.
M. Hocek, Eur. J. Org. Chem. 2003, 245–254.
For detailed information, see the Supporting Information.
L. Ackermann, Synthesis 2006, 1557–1571.
Generous support by the DFG (SPP 1807 and Gottfried-
Wilhelm-Leibniz award) is gratefully acknowledged. We thank Dr.
Christopher Golz (University Göttingen) for assistance with the
X-ray diffraction analysis, and Karsten Rauch (University
Göttingen) for the synthesis of L4 and L5.
Keywords: asymmetric catalysis • nickel • C−H activation •
SPOs • aluminum-free
[1]
a) Y. Xu, G. Dong, Chem. Sci. 2018, 9, 1424–1432; b) W. Wang,
M. M. Lorion, J. Shah, A. R. Kapdi, L. Ackermann, Angew. Chem.
Int. Ed. 2018, 57, 14700–14717; c) T. Piou, T. Rovis, Acc. Chem.
Res. 2018, 51, 170–180; d) P. Gandeepan, L. Ackermann, Chem
2018, 4, 199–222; e) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017,
117, 9247–9301; f) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q.
Yu, Chem. Rev. 2017, 117, 8754–8786; g) B. Ye, N. Cramer, Acc.
Chem. Res. 2015, 48, 1308–1318; h) G. Rouquet, N. Chatani,
Angew. Chem. Int. Ed. 2013, 52, 11726–11743; i) D. A. Colby, A.
S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45,
814–825; j) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212–
11222; k) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem.
[10]
[11]
[12]
[13]
[14]
This article is protected by copyright. All rights reserved.