10.1002/anie.202014207
Angewandte Chemie International Edition
RESEARCH ARTICLE
[16] J. Stierstorfer, K. R. Tarantik, T. M. Klapötke, Chem. Eur. J. 2009, 15,
5775-5792.
respectively). This means that hydrogen bonds are the main
intermolecular interactions in 14·2H2O.
[17] T. M. Klapötke, B. Krumm, T. Reith, Eur. J. Org. Chem. 2017, 2017,
3666-3673.
[18] Q. Yu, G. H. Imler, D. A. Parrish, J. M. Shreeve,Chem. Eur. J. 2017, 23,
17682-17686.
Conclusion
[19] G. Zhao, P. Yin, D. Kumar, G. H. Imler, D. A. Parrish, J. M. Shreeve, J.
Am. Chem. Soc. 2019, 141, 19581-19584.
In summary, a family of new mono- and bis-1,3,4-oxadiazole-
bridged furazans was synthesized and fully characterized. The
mono-1,3,4-oxadiazole-bridged compounds were prepared on
the basis of a rarely reported reaction starting from amidine. In
addition, the reaction mechanism for the synthesis of 2 was
proposed and the chemical inactivity of 3 and 11 toward oxidation
were studied computationally. Experiments and quantum
chemistry calculations proved that the 1,3,4-oxadiazole ring
improves the stability of energetic compounds. Additionally, the
thermal stability of the bis-1,3,4-oxadiazole-bridges was higher
than that of the mono-1,3,4-oxadiazole bridges. The detonation
[20] Y. H. Joo, J. M. Shreeve, Angew. Chem. Int. Ed. 2009, 48, 564-567.
[21] P. Yin, D. A. Parrish, J. M. Shreeve, Angew. Chem. Int. Ed. 2014, 53,
12889-12892.
[22] D. Fischer, T. M. Klapötke, M. Reymann, J. Stierstorfer, Chem. Eur. J.
2014, 20, 6401-6411.
[23] J. Zhang, J. M. Shreeve, J. Am. Chem. Soc. 2014, 136, 4437-4445.
[24] J. C. Dacons, M. E. Sitzmann, J. Heterocycl. Chem. 1977, 14, 1151-1155.
[25] T. M. Klapötke, T. G. Witkowski, ChemPlusChem 2016, 81, 357-360.
[26] J. Tian, H. Xiong, Q. Lin, G. Cheng, H. Yang, New J. Chem. 2017, 41,
1918-1924.
[27] W. Zhang, J. Zhang, M. Deng, X. Qi, F. Nie, Q. Zhang, Nat. Commun.
2017, 8, 181.
performances of nitroamine
5 (9211 m
s-1, 38.0 GPa),
[28] Y. Tang, C. He, L. A. Mitchell, D. A. Parrish, J. M. Shreeve, J. Mater.
Chem. A 2015, 3, 23143-23148.
hydroxylammonium salt 8 (9101 m s-1, 37.9 GPa), and nitroamine
13 (9058 m s-1, 36.2 GPa) were better than that of RDX (8795 m
s-1, 34.7 GPa) and even close to that of the highly explosive HMX
(9144 m s-1, 39.2 GPa). This systematic study of 1,3,4-
oxadiazole-bridged energetic compounds, analysis of the effect of
the 1,3,4-oxadiazole bridge on the reactivity and performance of
the compounds, and design and synthesis of 1,3,4-oxadiazoxle-
bridged compounds provides a theoretical basis for future
energetics design.
[29] T. Ichikawa, T. Kato, T. Takenishi, J. Heterocycl. Chem. 1965, 2, 253-
255.
[30] A. I. Stepanov, V. S. Sannikov, D. V. Dashko, A. G. Roslyakov, A. A.
Astrat’ev, E. V. Stepanova, Chem. Heterocycl. Com. 2015, 51, 350-360.
[31] A. B. Sheremetev, N. S. Aleksandrova, D. E. Dmitriev, B. B. Averkiev, M.
Y. Antipin, J. Heterocycl. Chem. 2005, 42, 519-525.
[32] J. Ma, J. Tang, H. Yang, Z. Yi, G. Wu, S. Zhu, W. Zhang, Y. Li, G. Cheng,
ACS Appl. Mater. Interfaces 2019, 11, 26053-26059.
[33] F. H. Allen, J. Chem. Soc., Perk. T. 2 1987.
[34] D. R. Miller, D. C. Swenson, E. G. Gillan, J. Am. Chem. Soc. 2004, 126,
5372-5373.
[35] T. M. Klapötke, B. Krumm, F. A. Martin, J. Stierstorfer, Chem. Asian J.
2012, 7, 214-224.
Acknowledgements
[36] N. V. Latypov, J. Bergman, A. Langlet, U. Wellmar, U. Bemm, 1998, 54,
11525-11536.
This work was supported by the Science Challenge Project
(TZ2018004), the National Natural Science Foundation of China
(No. 21676147, 21875110), and the Office of Naval Research
(N00014-16-1-2089).
[37] J. Evers, T. M. Klapötke, P. Mayer, G. Oehlinger, J. Welch, Inorg. Chem.
2006, 45, 4996-5007.
[38] C. Astorga, F. Rebolledo, V. Gotor, Synthesis 1991, 1991, 350-352.
[39] T. Fang, Q. Tan, Z. Ding, B. Liu, B. Xu, Org. Lett. 2014, 16, 2342-2345.
[40] M. D. Coburn, J. Labelled Compd. Rad. 1985, 22, 183-187.
[41] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,
X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L.
Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,
A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N.
Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M.
J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T.
A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J.
C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C.
Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.
Farkas, J. B. Foresman, D. J. Fox, Gaussian 09 Rev. C.01, Wallingford,
CT, 2010.
Keywords: Energetic Materials • 1,3,4-Oxadiazole • Thermal
Stability • Synthesis • Quantum Calculation
[1]
[2]
[3]
W. E. Bachmann, W. J. Horton, E. L. Jenner, N. W. MacNaughton, L. B.
Scott, J. Am. Chem. Soc. 1951, 73, 2769-2773.
H. Feuer, J. W. Shepherd, C. Savides, J. Am. Chem. Soc. 1956, 78,
4364-4367.
A. T. Nielsen, R. A. Nissan, D. J. Vanderah, C. L. Coon, R. D. Gilardi, C.
F. George, J. Flippen-Anderson, J. Org. Chem. 1990, 55, 1459-1466.
T. N. Arnold, B. C. Santa, United States Patent 1997. US005693794A.
Y. Wang, X. Song, D. Song, L. Liang, C. An, J. Wang, J. Hazard. Mater.
2016, 312, 73-83.
[4]
[5]
[6]
Y. Liu, C. An, J. Luo, J. Wang, J. Nanosci. Nanotechnol. 2019, 19, 5783-
5789.
[7]
[8]
O. Bolton, A. J. Matzger, Angew. Chem. Int. Ed. 2011, 50, 8960-8963.
T. Fei, P. Lv, Y. Liu, C. He, C. Sun, S. Pang, Cryst. Growth Des. 2019,
19, 2779-2784.
[42] T. Yan, G. Cheng, H. Yang, New J. Chem. 2020, 44, 6643-6651.
[43] J. Shao, X. Cheng, X. Yang, J. Mol. Struc- Theochem 2005, 755, 127-
130.
[9]
J. Zhang, J. M. Shreeve, CrystEngComm 2016, 18, 6124-6133.
[10] H. Gao, J. M. Shreeve, Chem. Rev. 2011, 111, 7377-7436.
[11] H. Wei, C. He, J. Zhang, J. M. Shreeve, Angew. Chem. Int. Ed. 2015, 54,
9367-9371.
[44] M. D. Morse, Acc. Chem. Res. 2019, 52, 119-126.
[45] X. Yao, X. Hou, G. Wu, Y. Xu, H. Xiang, H. Jiao, Y. Li, J. Phys. Chem. A
2002, 106, 7184-7189.
[12] A. A. Dippold, T. M. Klapötke, J. Am. Chem. Soc. 2013, 135, 9931-9938.
[13] T. M. Klapötke, J. Stierstorfer, J. Am. Chem. Soc. 2009, 131, 1122-1134.
[14] P. Yin, Q. Zhang, J. M. Shreeve, Acc. Chem. Res. 2016, 49, 4-16.
[15] D. E. Chavez, D. A. Parrish, L. Mitchell, Angew. Chem. Int. Ed. 2016, 55,
8666-8669.
[46] A. J. Bellamy, In High Energy Density Materials, T. M. Klapötke, Ed.
Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 1-33.
[47] R. Meyer, J. Köhler, A. Homburg, Explosives, 6th ed. WileyVCH:
Weinheim, 2007.
[48] M. Suceska, EXPLO5 6.01, Brodarski Institute: Zagreb, Croatia, 2013.
7
This article is protected by copyright. All rights reserved.