PATRON et al.
References
The infrared absorption spectra of the final products
obtained from the four polynuclear coordination
compounds after various thermal treatments confirmed
the X-ray experiments. As example, we mention only
the case of yttrium-iron coordination compounds
(Fig. 9). The FTIR spectrum of the yttrium garnet
Y3Fe5O12, is characterized by the presence of three
bands at 660, ~600 and ~565 cm–1 assigned to the
stretching mode of the tetrahedrical coordinated
cations [23, 24]. The FTIR spectrum of the oxide
obtained from malate precursor exhibits also the bands
characteristic to the orthorhombic ferrite, attributed to
the stretching (ns, 560–620 cm–1), bending (nb,
540–520 cm–1) and lattice (nL~420 cm–1) vibrations,
the first two ones splitted. Typical bands of Y2O3
(~560, ~460 and ~420 cm–1) are as well detected.
1 O. Carp and E. Segal, Rev. Roum. Chim., 39 (1994) 1123.
2 M. Brezeanu, L. Patron and M. Andruh, Polynuclear
Coordination Compounds and their Application, Ed.
Academiei 1986.
3 I. Mindru, L. Patron and M. Brezeanu, Roum. Chem.
Quart. Rev., 4 (1996) 167.
4 P. E. Rush, J. D. Oliver, G. D. Simpson and G. O. Carlisle,
J. Inorg. Nucl. Chem., 37 (1975) 1393.
5 S. Kirschner and A. Kiesling, J. Am. Chem. Soc.,
20 (1960) 4174.
6 N. Dennis Chasteen and R. Linn Belford, Inorg. Chem.,
9 (1970) 169.
7 I. Valiuna and K. P. Pribylor, Russ. J. Inorg. Chem.,
36 (1991) 379.
8 B. S. Randhawa and K. J. Sweety, J. Therm. Anal. Cal.,
65 (2001) 829.
9 S. Sarmah and N. N. Dass, J. Thermal Anal., 54 (1988) 913.
10 N. Deb, J. Therm. Anal. Cal., 78 (2004) 237.
11 N. N. Mallikarjuna, A. Lagashetty and A. Venkataraman,
J. Therm. Anal. Cal., 74 (2003) 819.
Conclusions
12 V. Logvinenko, L. Yudanova, N. Yudanov and
G. Chekhova, J. Therm. Anal. Cal., 74 (2003) 395.
13 D. G. Karraker, Inorg. Chem., 6 (1967) 1863.
14 D. G. Karraker, Inorg. Chem., 7 (1967) 473.
15 K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Coordination Compounds, 4th Ed., J. Wiley & Sons, 1986.
16 L. Patron, O. Carp, I. Mindru, G. Marinescu, N. Stanica
and I. Balint, J. Serb. Chem. Soc., 70 (2005) 1049.
17 P. Baraldi, Spectrochim. Acta, 38 (1982) 51.
18 O. Carp, L. Patron, I. Mindru, G. Marinescu,
L. Diamandescu and A. Banuta, J. Therm. Anal. Cal.,
74 (2003) 789.
Both, the thermal behaviour of the investigations
coordination compounds and the phase compositions
of the resulted decomposition products depend on the
nature of metallic cations (yttrium–iron or erbium–iron)
and ligand anions (malate or gluconate).
The following conclusions may be pointed out:
• The thermal degradations of the malate coordina-
tion compounds occur in well defined steps, via an
amorphous oxoacetate and two amorphous oxocarbo-
nate intermediates. The phase composition of the
final decomposition products consists in a mixture
of simple (Y2O3, Er2O3, Fe3O4, a- and g-Fe2O3) and
mixed (YFeO3, ErFeO3, Y3Fe5O12 and Er3Fe5O12)
oxides. The increase of the temperature determines
the formation of mixed oxides: in the case of
yttrium–iron malate compound the orthorhombic
YFeO3 is preferentially formed, while in the case of
erbium–iron malate compound the cubic Er3Fe5O12
is obtained.
• The decomposition steps of the gluconate compounds
are partially overlapped. The intermediates isolated
at the end of the anionic ligand degradation, are
amorphous oxides with entrapped CO2. These
entrapped gases are released only when the ordering
during crystallization occurs, fact which determines
the obtaining of pure garnet oxide products simul-
taneously with the decomposition process.
19 O. Carp, L. Patron, E. Segal, R. Barjega and M. Brezeanu,
J. Therm. Anal. Cal., 56 (1999) 513.
20 I. Mindru, L. Patron, O. Carp, G. Marinescu, M. Pascu,
G. Pascu and L. Diamandescu, Rev. Roum. Chim.,
49 (2004) 235.
21 M. A. Mohamed, A. K. Galwey and S. Halawy,
Thermochim. Acta, 323 (1998) 27.
22 A. C. Tass, P. J. Majewski and F. Aldinger, J. Am. Ceram.
Soc., 83 (2000) 2954.
23 A. M. Hofmeister and K. R. Campbell, J. Appl. Phys.,
72 (1992) 638.
24 M. Ristic, I. Nowik, S. Popovic, I. Feluer and S. Music,
Mater. Lett., 57 (2003) 2584.
DOI: 10.1007/s10973-007-8839-4
312
J. Therm. Anal. Cal., 92, 2008