S.M.G. Pires et al. / Applied Catalysis A: General 439–440 (2012) 51–56
55
4
. Conclusions
[13] R. Rahimi, A.A. Tehrani, M.A. Fard, B.M.M. Sadegh, H.R. Khavasi, Catal. Commun.
1 (2009) 232–235.
1
[
[
14] X. Zhou, S. Lv, H. Wang, X. Wang, J. Liu, Appl. Catal. A 396 (2011) 101–106.
15] S. Rayati, S. Zakavi, H. Kalantari, J. Porphyr. Phtalocya. 15 (2011) 131–139 (and
references cited therein).
In this work we demonstrate that [Mn(TDCPP)Cl] (catalyst
I) and [Mn(TPFPP)Cl] (catalyst II) are able to efficiently oxidize
several organosulfur compounds, namely sulfides and refractory
S-containing aromatic compounds, such as benzothiophenes and
dibenzothiophene, under very mild conditions (at room tempera-
ture, using diluted aqueous hydrogen peroxide and acetonitrile as
solvent). For both catalysts, and for all the substrates tested, the
corresponding sulfones are obtained in good to excellent yields
at the end of the oxidation reactions. Nevertheless [Mn(TDCPP)Cl]
give rise to the best results, affording higher conversions in lower
reaction times. In fact, the conversion of benzothiophene (3)
reaches 99.9% in 90 min, whereas the conversion of dibenzothio-
phene (7) attains 99.9% after 120 min of reaction, both for catalyst
I)/substrate molar ratio of 150. The substituted benzothiophenes
4–6) give rise to similar results, conversions being always higher
for a catalyst (I)/substrate molar ratio of 150 instead of 300. As
expected, less hindered sulfides (1–2) are very efficiently trans-
formed into the corresponding sulfones. In the case of thioanisole
1), the conversion reaches 99.9% even for a catalyst (I)/substrate
molar ratio of 600, after 90 min of reaction.
The oxidation of a model fuel (a solution of benzothiophene,
-methylbenzothiophene, 2-methylbenzothiophene, and diben-
zothiophene in hexane) was performed using hydrogen peroxide
and [Mn(TDCPP)Cl] as catalyst, attaining total conversion into
the corresponding sulfones. This is a very promising evidence of
the potential application of these manganese complexes for the
removal of refractory S-containing organic compounds from fuels.
[
16] A. Rezaeifard, M. Jafarpour, H. Raissi, E. Ghiamati, A. Tootoonchi, Polyhedron 30
(
2011) 592–598.
[
17] S. Zakavi, A. Abasi, A.R. Pourali, S. Talebzadeh, Bull. Korean Chem. Soc. 33 (2012)
35–38.
[18] R.T. Yang, A.J. Hernández-Maldonado, F.H. Yang, Science 301 (2003) 79–81 (and
references cited therein).
[
19] J.M. Campos-Martin, M.C. Capel-Sanchez, P. Peres-Presas, J.L.G. Fierro, J. Chem.
Technol. Biotechnol. 85 (2010) 879–890 (and references cited therein).
[20] X. Ma, A. Zhou, C. Song, Catal. Today 123 (2007) 276–284 (and references cited
therein).
[
21] F. Al-Shahrani, T. Xiao, S.A. Llewellyn, S. Barri, Z. Jiang, H. Shi, G. Martinie, M.L.H.
Green, Appl. Catal. B 73 (2007) 311–316 (and references cited therein).
[22] B. Pawelec, R.M. Navarro, J.M. Campos-Martin, J.L.G. Fierro, Catal. Sci. Technol.
(2011) 23–42 (and references cited therein).
23] M.F. Ali, A. Al-Malki, B. El-Ali, G. Martinie, M.N. Siddiqui, Fuel 85 (2006)
354–1363.
[24] A. Stanislaus, A. Marafi, M.S. Rana, Catal. Today 153 (2010) 1–68.
1
[
(
(
1
[25] Y. Wang, G. Li, X. Wang, C. Jin, Energy Fuels 21 (2007) 1415–1419.
[26] Z. Jiang, H. Lu, Y. Zhang, C. Li, Chin. J. Catal. 32 (2011) 707–715.
[
27] L.F. Ramirez-Verduzco, E. Torres-Garcia, R. Gomez-Quintana, V. Gonzalez-Pe n˜ a,
F. Murrieta-Guevara, Catal. Today 98 (2004) 289–294.
[
28] S. Murata, K. Murata, K. Kidena, M. Nomura, Energy Fuels 18 (2004)
(
116–121.
[
29] A.K. Sharipov, V.R. Nigmatullin, Chem. Technol. Fuels Oils 41 (2005) 225–229.
[30] G.X. Yu, S.X. Lu, H. Chen, Z. Zhu, Energy Fuels 19 (2005) 447–452.
[31] D. Zhao, Y. Wang, E. Duan, Molecules 14 (2009) 4351–4357 (and references
cited therein).
3
[
32] R. Villar, I. Encio, M. Migliaccio, M.J. Gil, V. Martinez-Merino, Bioorg. Med. Chem.
12 (2004) 963–968.
[33] R. Bentley, Chem. Soc. Rev 34 (2005) 609–624 (and references cited therein).
[
34] K. Kamata, T. Hirano, R. Ishimoto, N. Mizuno, Dalton Trans. 39 (2010)
509–5518 (and references cited therein).
5
[
[
35] K. Ryu, J. Kim, J. Heo, Y. Chae, Biotech. Lett. 24 (2002) 1535–1538.
36] L.C. Caero, E. Hernandez, F. Pedraza, F. Murrieta, Catal. Today 107 (2005)
5
64–569 (and references cited therein).
Acknowledgements
[
[
37] Y. Shiraishi, T. Naito, T. Hirai, Ind. Eng. Chem. Res. 42 (2003) 6034–6039.
38] S. Cheng, Y. Liu, J. Gao, L. Wang, X. Liu, G. Gao, P. Wu, M. He, Chin. J. Catal. 27
(
2006) 547–549.
39] F. Figueras, J. Palomeque, S. Loridant, C. Feche, N. Essayem, G. Gelbard, J. Catal.
26 (2004) 25–31.
[40] W. Zhu, H. Li, X. Jiang, Y. Yan, J. Lu, L. He, J. Xia, Green Chem. 10 (2008)
41–646.
Thanks are due to Funda c¸ ão para a Ciência e a Tecnolo-
gia (FCT/FEDER) for funding the Organic Chemistry Research
Unit (QOPNA; Project PEst-C/QUI/UI0062/2011). S.M.G. Pires also
thanks FCT for his PhD Grant (SFRH/BD/64354/2009). Authors also
acknowledge the Portuguese National NMR Network, supported
with funds from FCT.
[
2
6
[
41] A. Di Giuseppe, M. Crucianelli, F. De Angelis, C. Crestini, R. Saladino, Appl. Catal.
B 89 (2009) 239–245.
[42] H.G. Bernal, L.C. Caero, E. Finocchio, G. Busca, Catal. Commun. 10 (2009)
[
43] A.M. Cojocariu, P.H. Mutin, E. Dumitriu, A. Aboulaich, A. Vioux, F. Fajula, V.
Hulea, Catal. Today 157 (2010) 270–274.
Appendix A. Supplementary data
[
44] K. Bahrami, M.M. Khodaei, P. Fattahpour, Catal. Sci. Technol.
89–393.
1 (2011)
3
Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/j.apcata.
[
[
45] Y. Hu, Q. He, Z. Zhang, N. Ding, B. Hu, Chem. Commun. 47 (2011) 12194–12196.
46] Y. Jia, G. Li, G. Ning, Fuel Process. Technol. 92 (2011) 106–111.
2
012.06.044.
[47] A.V. Tarakanova, M.K. Baishev, E.V. Rakhmanov, S.V. Kardashev, A.V. Anisimov,
Theor. Found. Chem. Eng. 44 (2010) 540–544.
[
48] J.M. Campos-Martin, M.C. Capel-Sanchez, J.L.G. Fierro, Green Chem. 6 (2004)
57–562.
5
References
[
[
49] A.K. Vardhaman, S. Sikdar, C.V. Sastri, Indian J. Chem. 50A (2011) 427–431.
50] S. Otsuki, T. Nonaka, N. Takashima, W.H. Qian, A. Ishihara, T. Imai, T. Kabe,
Energy Fuels 14 (2000) 1232–1239.
[1] B. Meunier, A. Robert, G. Pratviel, J. Bernadou, in: K.M. Kadish, K.M. Smith, R.
Guilard (Eds.), The Porphyrin Handbook, vol. 4, Academic Press, San Diego, 2000
[
51] Y. Shiraishi, K. Tachibana, T. Hirai, I. Komasawa, Ind. Eng. Chem. Res. 41 (2002)
(
chapter 31).
4362–4375.
[
2] J.T. Groves, in: P.R. Ortiz de Montellano (Ed.), Cytochrome P-450: Structure,
Mechanism, and Biochemistry, 3rd ed., Kluwer Academic/Plenum Publishers,
New York, 2005 (chapter 1).
[
[
52] J. Nehlsen, J. Benziger, I. Kevrekidis, Ind. Eng. Chem. Res. 45 (2006) 518–524.
53] K. Yazu, Y. Yamamoto, T. Furuya, K. Miki, K. Ukegawa, Energy Fuels 15 (2001)
1535–1536.
[
[
3] J.T. Groves, T.E. Nemo, R.S. Myers, J. Am. Chem. Soc. 101 (1979) 1032–1033.
4] R.A. Sheldon, Metalloporphyrins in Catalytic Oxidations, Marcel Dekker, New
York, 1994 (chapter 1).
[
[
54] D. Huang, Y. Lu, Y. Wang, G. Luo, Ind. Eng. Chem. Res. 46 (2007) 6221–6227.
55] Y. Zhang, H. Lu, L. Wang, Y. Zhang, P. Liu, H. Han, Z. Jiang, C. Li, J. Mol. Cat. A:
Chem. 332 (2010) 59–64.
56] H. Lu, Y. Zhang, Z. Jiang, C. Li, Green Chem. 12 (2010) 1954–1958.
57] W. Huang, W. Zhu, H. Li, H. Shi, G. Zhu, H. Liu, G. Chen, Ind. Eng. Chem. Res. 49
[
5] K.S. Suslick, in: K.M. Kadish, K.M. Smith, R. Guilard (Eds.), The Porphyrin Hand-
book, vol. 4, Academic Press, San Diego, 2000 (chapter 28).
6] J. Bernadou, B. Meunier, Adv. Synth. Catal. 346 (2004) 171–184 (and references
cited therein).
[
[
[
(
2010) 8998–9003.
58] X. Zhou, J. Li, X. Wang, K. Jin, W. Ma, Fuel Process. Technol. 90 (2009)
17–323.
59] I. Nigel-Etinger, A. Mahammed, Z. Gross, Catal. Sci. Technol.
78–581.
[
[
[
[
[
7] D. Mansuy, C. R. Chimie 10 (2007) 392–413 (and references cited therein).
8] M.M.Q. Simões, R. De Paula, M.G.P.M.S. Neves, J.A.S. Cavaleiro, J. Porphyr. Phtalo-
cya. 13 (2009) 589–596 (and references cited therein).
3
1
(2011)
5
[9] P.M. Dansette, G. Bertho, D. Mansuy, Biochem. Biophys. Res. Commun. 338
60] R.R.L. Martins, M.G.P.M.S. Neves, A.J.D. Silvestre, M.M.Q. Simões, A.M.S. Silva,
A.C. Tomé, J.A.S. Cavaleiro, P. Tagliatesta, C. Crestini, J. Mol. Catal. A: Chem. 172
(
2005) 450–455 (and references cited therein).
[
[
[
10] T. Ohshiro, S. Nakura, Y. Ishii, K. Kino, K. Kirimura, Y. Izumi, Biosci. Biotechnol.
Biochem. 73 (2009) 2128–2130 (and references cited therein).
11] X.T. Zhou, H.B. Ji, Z. Cheng, J.C. Xu, L.X. Pei, L.F. Wang, Bioorg. Med. Chem. Lett.
(
2001) 33–42.
[
[
61] S.L.H. Rebelo, M.M.Q. Simões, M.G.P.M.S. Neves, J.A.S. Cavaleiro, J. Mol. Catal. A:
Chem. 201 (2003) 9–22.
62] S.L.H. Rebelo, M.M.Q. Simões, M.G.P.M.S. Neves, A.M.S. Silva, J.A.S. Cavaleiro,
Chem. Commun. (2004) 608–609.
1
7 (2007) 4650–4653 (and references cited therein).
12] X.T. Zhou, H.B. Ji, Q.L. Yuan, J.C. Xu, L.X. Pei, L.F. Wang, Chin. J. Chem. 26 (2008)
114–1118.
1