Page 5 of 6
ACS Catalysis
(5) For successful AH of tetrasubstituted unfunctionalized ole-
lysts for the Highly Enantioselective Hydrogenation of Terminal
fins see: Zr-catalysts; a) Troutman, M. V.; Appella, D. H.; Buch-
wald, S. L. Asymmetric Hydrogenation of Unfunctionalized
Tetrasubstituted Olefins with a Cationic Zirconocene Catalyst. J.
Am. Chem. Soc. 1999, 121, 4916–4917 (ee's in the range 52-99% for
some indene derivatives, at 8 mol% of catalyst and 110 bar of H2).
Rh-PP catalysts. (b) Zhang, Z.; Wang, J.; Li, J.; Yang, F.; Liu, G.;
Tang, W.; He, W.; Fu, J.-J.; Shen, Y.-H.; Li, A.; Zhang, W.-D.
Total Synthesis and Stereochemical Assignment of Delavatine A:
Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type
Tetrasubstituted Olefins and Kinetic Resolution through Pd-
Catalyzed Triflamide-Directed C-H Olefination. J. Am. Chem.
Soc. 2017, 139, 5558–5567 (ee's in the range 85-95% at 10 mol% of
Rh, 60°C in 4 days). Ir-PN catalysts see: (c) Schrems, M. G.;
Neumann, E.; Pfaltz, A. Iridium-Catalyzed Asymmetric Hydro-
genation of Unfunctionalized Tetrasubstituted Olefins. Angew.
Chem. Int. Ed. 2007, 46, 8274–8276 (94-97% ee, 1-2 mol % of Ir at
Alkenes. J. Am. Chem. Soc. 2009, 131, 12344–13353.
1
2
3
4
5
6
7
8
(8) Kazmaier’s group developed
a
related diphe-
nylphosphinite-oxazoline ligand, derived from pivaldehyde and
tert-leucinol (R1=R2= tBu). The Ir-catalyst modified with this
ligand was only efficient in the AH of α,β-unsaturated ketones
(ee’s up to >99%). Thus, it was catalytically inactive for the other
classes of olefins tested (e.g. enol phosphinates, α,β-unsaturated
esters, enamides…). Maurer, F.; Huch, V.; Ullrich, A.; Kazmaier,
U. Development of Catalysts for the Stereoselective Hydrogena-
tion of α,β-Unsaturated Ketones. J. Org. Chem. 2012, 77, 5139–
5143.
(9) A possible reason for this behavior is a higher degree of
isomerization using phosphite-based catalysts than the phos-
phinite analogues which leads to complex mixtures of olefins in
solution. This was observed in preliminary deuteration studies
performed with tetrasubstituted olefins (see Supporting Infor-
mation for details of deuteration experiments). A second possi-
ble reason, based on our previous quadrant analysis of the most
stable TSs with related phosphite-oxazoline ligands, can be
related to the bulkiness of the biaryl phosphite group. This bulk-
iness has shown to be beneficial in generating a well-suited
chiral pocket for di- and trisubstituted olefins; nevertheless for
tetrasubstituted olefins it seems to hamper the preferential
coordination of the substrate, leading to TSs with similar high
energies, which results in low activities and enantioselectivities
(see: Mazuela, J.; Norrby, P.-O; Andersson, P. G.; Pàmies, O.;
Diéguez, M. Pyranoside Phosphite–Oxazoline Ligands for the
Highly Versatile and Enantioselective Ir-Catalyzed Hydrogena-
tion of Minimally Functionalized Olefins. A Combined Theoreti-
cal and Experimental Study. J. Am. Chem. Soc. 2011, 133, 13634–
13645).
(10) See, for instance: (a) Saudan, L. A. Hydrogenation Pro-
cesses in the Synthesis of Perfumery Ingredients. Acc. Chem. Res.
2007, 40, 1309–1319. (b) Etayo, P.; Vidal-Ferran, A. Rhodium-
Catalysed Asymmetric Hydrogenation as a Valuable Synthetic
Tool for the Preparation of Chiral Drugs. Chem. Soc. Rev. 2013,
42, 728–754. (c) Fürstner, A.; Bindl, M. Concise Total Synthesis of
Cruentaren A. Angew Chem. Int. Ed. 2007, 46, 9275–9278.
(11) For the successful AH of disubstituted olefins, see: (a)
Blankenstein, J.; Pfaltz, A. A New Class of Modular Phosphinite–
Oxazoline Ligands: Ir-Catalyzed Enantioselective Hydrogenation
of Alkenes. Angew. Chem. Int. Ed. 2001, 40, 4445–4447. (b) McIn-
tyre, S.; Hörmann, E.; Menges, F.; Smidt, S. P.; Pfaltz, A. Iridi-
um-Catalyzed Enantioselective Hydrogenation of Terminal
Alkenes. Adv. Synth. Catal. 2005, 347, 282-288. (c) Biosca, M.;
Paptchikhine, A.; Pàmies, O.; Andersson, P. G.; Diéguez, M.
Extending the Substrate Scope of Bicyclic P-Oxazoline/Thiazole
Ligands for Ir-Catalyzed Hydrogenation of Unfunctionalized
Olefins by Introducing a Biaryl Phosphoroamidite Group. Chem.
Eur. J. 2015, 21, 3455-3464.
(12) (a) Pharm, D. Q.; Nogid, A. Rotigotine Transdermal Sys-
tem for the Treatment of Parkinson's Disease. Clin. Ther. 2008,
30, 813-824. (b) Astier, B.; Lambás Señas, L.; Soulière, F.; Schmitt,
P.; Urbain, N.; Rentero, N.; Bert, L.; Denoroy, L.; Renaud, B.;
Lesourd, M.; Muñoz, C.; Chouvet, G. In vivo Comparison of Two
5-HT1A Receptors Agonists Alnespirone (S-20499) and Buspi-
rone on Locus Coeruleus Neuronal Activity. Eur. J. Pharmacol.
2003, 459, 17–26. (c) Ross, S. B.; Thorberg, S.-O.; Jerning, E.;
Mohell, N.; Stenfors, C.; Wallsten, C.; Milchert, I. G.; Ojteg, G. A.
Robalzotan (NAD-299), a Novel Selective 5-HT 1A Receptor
Antagonist. CNS Drug Rev. 1999, 5, 213-232.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
r.t). (d) Busacca, C. A.; Qu, B.; Grět, N.; Fandrick, K. R.; Saha, A.
K.; Marsini, M.; Reeves, D.; Haddad, N.; Eriksson, M.; Wu, J. P.;
Grinberg, N.; Lee, H.; Li, Z.; Lu, B.; Chen, D.; Hong, Y.; Ma, S.;
Senanayake, C. H. Tuning the Peri Effect for Enantioselectivity:
Asymmetric Hydrogenation of Unfunctionalized Olefins with
the BIPI Ligands. Adv. Synth. Catal. 2013, 355, 1455–1463 (ee's up
to 96% at 0°C for two substrates).
(6) For the most successful applications see: a) Jiang, X.-B.;
Lefort, L.; Goudriaan, P. E.; de Vries, A. H. M.; van Leeuwen, P.
W. N. M.; Reek, J. N. H. Screening of a Supramolecular Catalyst
Library in the Search for Selective Catalysts for the Asymmetric
Hydrogenation of a Difficult Enamide Substrate. Angew. Chem.
Int. Ed. 2006, 45, 1223–1227. (b) Wu, Z.; Ayad, T.; Ratoveloma-
nana-Vidal, V. Efficient Enantioselective Synthesis of 3-
Aminochroman Derivatives Through Ruthenium-Synphos Cata-
lyzed Asymmetric Hydrogenation. Org. Lett. 2011, 13, 3782–3785.
(c) Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, E. Design of
Phosphorus Ligands with Deep Chiral Pockets: Practical Synthe-
sis of Chiral β-Arylamines by Asymmetric Hydrogenation. An-
gew. Chem. Int. Ed. 2013, 52, 4235–4238. (d) Salom, E.; Orgué, S.;
Riera, A.; Verdaguer, X. Highly Enantioselective Iridium-
Catayzed Hydrogenation of Cyclic Enamides. Angew. Chem. Int.
Ed. 2016, 55, 7988–7992. (e) Magre, M.; Pàmies, O.; Diéguez, M.
PHOX-Based Phosphite-Oxazoline Ligands for the Enantioselec-
tive Ir-Catalyzed Hydrogenation of Cyclic β-Enamides. ACS
Catal. 2016, 6, 5186–5190. (f) Li, X.; You, C.; Yang, H.; Che, J.;
Chen, P.; Yang, Y.; Lv, H.; Zhang, X. Rhodium-Catalyzed Asym-
metric Hydrogenation of Tetrasubstituted Cyclic Enamides:
Efficient Access to Chiral Cycloalkylamine Derivatives. Adv.
Synth. Catal. 2017, 359, 597–602. (g) Tang, W.; Wu, S.; Zhang, X.
Enantioselective Hydrogenation of Tetrasubstituted Olefins of
Cyclic β-(Acylamino)acrylates. J. Am. Chem. Soc. 2003, 125, 9570–
9571.
(7) (a) Kaiser, S.; Smidt, S. P.; Pfaltz, A. Iridium Catalysts with
Bicyclic Pyridine–Phosphinite Ligands: Asymmetric Hydrogena-
tion of Olefins and Furan Derivatives. Angew. Chem. Int. Ed.
2006, 45, 5194–5197. (b) Li, S.; Zhu, S.-F.; Xie, J.-H.; Song, S.;
Zhang, C.-M.; Zhou, Q.-L. Enantioselective Hydrogenation of α-
Aryloxy and α-Alkoxy α,β-Unsaturated Carboxylic Acids Cata-
lyzed by Chiral Spiro Iridium/Phosphino-Oxazoline Complexes.
J. Am. Chem. Soc. 2010, 132, 1172–1179. (c) Källström, K.; Hedberg,
C.; Brandt, P.; Bayer, P.; Andersson, P. G. Rationally Designed
Ligands for Asymmetric Iridium-Catalyzed Hydrogenation of
Olefins. J. Am. Chem. Soc. 2004, 126, 14308–14309. (d) Mazuela,
J.; Verendel, J. J.; Coll, M.; Schäffner, B.; Börner, A.; Andersson, P.
G.; Pàmies, O.; Diéguez, M. Iridium Phosphite−Oxazoline Cata-
ACS Paragon Plus Environment