Please do not adjust margins
Dalton Transactions
Page 8 of 9
ARTICLE
Journal Name
complexation for Nd3+ complexes with the amine ligands are
generally more exothermic (by a few kilojoules per mole to
more than ten kilojoules per mole) than corresponding
complexes with TMDGA. It is also interesting to note that the
stepwise enthalpies and entropies of complexation (Table S6 in
ESI) show different trends for BnABDMA, ABDMA, and
MABDMA. Again, the trends reflect the combination of the few
effects that contribute to the energetics of the complexation,
but it is complicated to assign the origin of these trends to
individual effects.
(6) Tian, G.; Rao, L.; Teat, S. J.; Liu, G. DCOhIe:m10..1E0u3r9./CJ.6D20T00196,9145D,
4172.
(7) Rao, L.; Tian, G.; Teat, S. J. Dalton Trans. 2010, 39, 3326.
(8) Tian, G.; Teat, S. J.; Rao, L. Inorg. Chem. 2014, 53, 9477.
(9) Jensen, M. P.; Yaita, T.; Chiarizia, R. Langmuir 2007, 23,
4765.
(10)
0893.
(11)
Rao, L.; Tian, G. Mater. Res. Soc. Symp. Proc. 2006, 893,
Ansari, S. A.; Pathak, P. N.; Husain, M.; Prasad, A. K.;
Parmar, V. S.; Manchanda, V. K. Radiochimica Acta. 2006, 94, 307.
(12)
Sasaki, Y.; Choppin, G. R. Radiochimica Acta. 1998, 80,
As suggested by the trend in the binding strength of
BnABDMA, ABDMA, and MABDMA with Nd3+ complexes, the
amine nitrogen participates in the coordination with Nd3+ and
tridentate complexes form. This is similar to the tridentate
complexes between Nd3+ and TMDGA. However, the binding
strength of the amine functionalized ligands can be fine-tuned
using different substitutional groups on the central nitrogen
atom. Such modification to tune the binding strength is not
feasible for the ether-functionalized ligands such as TMDGA or
the family of TRDGA ligands.
85.
(13)
2002, 90, 161.
Sugo, Y.; Sasaki, Y.; Tachimori, S. Radiochimica Acta.
(14)
Suzuki, H.; Sasaki, Y.; Sugo, Y.; Apichaibukol, A.; Kimura,
T. Radiochimica Acta. 2004, 92, 463.
(15)
Cuillerdier, C.; Musikas, C.; Nigond, L. Separation Science
and Technology 1993, 28, 155.
(16)
Horwitz, E. P.; Kalina, D. G.; Kaplan, L.; Mason, G. W.;
Diamond, H. Separation Science and Technology 1982, 17, 1261.
(17)
Tian, G.; Zhang, P.; Shen, Y.; Wang, J.; Rao, L. Separation
Science and Technology 2012, 47, 2160.
(18)
Gujar, R. B.; Ansari, S. A.; Prabhu, D. R.; Pathak, P. N.;
Conclusions
Sengupta, A.; Thulasidas, S. K.; Mohapatra, P. K.; Manchanda, V. K.
Solvent Extraction and Ion Exchange 2012, 30, 156.
In summary, thermodynamic parameters of the complexation
between Nd3+ ions and three amine-functionalized ligands,
BnABDMA, ABDMA, and MABDMA, were determined and
compared with those of a previously studied ether oxygen-
functionalized ligand TMDGA. The binding ability of the
amine-functionalized ligands generally form stronger
(19)
Magnusson, D.; Christiansen, B.; Glatz, J.-P.; Malmbeck,
R.; Modolo, G.; Serrano-Purroy, D.; Sorel, C. Solvent Extraction and
Ion Exchange 2009, 27, 26.
(20)
Exchange 2001, 19, 61.
(21) Narita, H.; Yaita, T.; Shoichi, T. Solvent Extraction and
Murali, M. S.; Mathur, J. N. Solvent Extraction and Ion
complexes with Nd3+ than the ether ligands, due to the Ion Exchange 2004, 22, 135.
(22)
Nave, S.; Modolo, G.; Madic, C.; Testard, F. Solvent
difference in the degree of dehydration of the amine nitrogen
and the ether oxygen. Besides the higher binding strength, the
amine-functionalized ligands offer the advantage of fine-tune
the binding strength by using different substitutional groups
on the amine nitrogen atom. The trend in thermodynamic
parameters within the three amine ligands is consistent with
the electronic effect of the substitutional groups on the
binding strength.
Extraction and Ion Exchange 2004, 22, 527.
(23)
Sasaki, Y.; Sugo, Y.; Suzuki, S.; Tachimori, S. Solvent
Extraction and Ion Exchange 2001, 19, 91.
(24)
Shimada, A.; Yaita, T.; Narita, H.; Tachimori, S.; Okuno,
K. Solvent Extraction and Ion Exchange 2004, 22, 147.
(25)
Tian, G.; Wang, J.; Shen, Y.; Rao, L. Solvent Extraction
and Ion Exchange 2005, 23, 519.
(26)
Tian, G.; Zhang, P.; Wang, J.; Rao, L. Solvent Extraction
and Ion Exchange 2005, 23, 631.
(27)
(28)
(29)
Gran, G. Analyst 1952, 77, 661.
Gans, P.; Sabatini, A.; Vacca, A. Talanta 1996, 43, 1739.
Gans, P.; Sabatini, A.; Vacca, A. J. Solution Chem. 2008,
Acknowledgements
This work was supported by the Director, Office of Science,
Office of Basic Energy Science of the U.S. Department of
Energy (DOE), under Contract No. DE-AC02-05CH11231 at
Lawrence Berkeley National Laboratory (LBNL).
37, 467.
(30)
Gong, Y.; Hu, H.-S.; Tian, G.; Rao, L.; Li, J.; Gibson, J. K.
Angew. Chem. Int. Ed. 2013, 53, 6885.
(31)
54, 7474.
(32)
Dau, P. D.; Wilson, R. E.; Gibson, J. K. Inorg. Chem. 2015,
MacDonald IV, L. W. Anal. Chem. 2014, 86, 1023.
Notes and references
(1) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.;
Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112,
724.
(2) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev.
2012, 112, 782.
(3) Ansari, S. A.; Pathak, P.; Mohapatra, P. K.; Manchanda, V. K.
Chem. Rev. 2012, 112, 1751.
(4) Panak, P. J.; Geist, A. Chem. Rev. 2013, 113, 1199.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins