Please do not adjust margins
Green Chemistry
Page 5 of 7
DOI: 10.1039/C7GC01696D
Journal Name
COMMUNICATION
the heterogeneous biocatalyst on a small scale. We also
identified the optimum temperature (ESI 4.4.6) for the
Acknowledgements
oxidation of DFF
2
as 35oC, although this and higher
The research leading to these results received support from
the Biotechnology and Biological Sciences Research Council
and (BBSRC BB/M028631/1 to SMM and AJC), Innovate UK
(Biome Bioplastics), The Royal Society Wolfson Merit Award
(to NJT).
temperatures resulted in lower TOF when using the hydrogel
(Table 3), which could be a result of hydrolysis of the hydrogel.
Nevertheless, the PaoABC hydrogel did show additional
thermostability at 45oC compared to the soluble enzyme
(Figures S29, S30)
. The turnover numbers (TON) and
frequencies (TOF) achieved with the biocatalyst are shown in
Table 3.
Notes and references
1
2
3
4
A. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411−
2502.
C. Zhou, X. Xia, C. Lin, D. Tonga and J. Beltraminib Chem.
Soc. Rev., 2011,40, 5588-5617.
L. Hu, G. Zhao, W. Hao, X Tang, Y Sun, L. Lin and S. Liub RSC
Table 3 TON and TOF of PaoABC solgel and soluble PaoABC.
Temperature
(oC)
TON
TOF
TOF
[s-1]
Catalyst
Soluble
[mol mol-1]
[hr-1]
Adv., 2012, 2, 11184-11206.
25
25
62305
“
8900
7788
2.4
2.1
(a) A. Boisen, T. B. Christensen, W. Fu, Y. Y. Gorbanev, T. S.
Hansen, J. S. Jensen, S. K. Klitgaard, S. Pedersen, A. Riisager,
T. Ståhlberg and J. M. Woodley, Chemical Engineering
Research and Design, 2009, 87, 1318–1327.
Hydrogel
Soluble
35
35
“
“
20768
10384
5.76
2.88
5. N. Jacquel, R. Saint-Loup, J. Pascault, A. Rousseau and F.
Fenouillot, Polymer 2015, 59, 234−242.
Hydrogel
6. C. H. R. Wilsens, N. J. M Wullems, E. Gubbels, T. F Yao, S.
Rastogi, B. A. Noordover, Polym. Chem. 2015, 6, 2707−2716
for-pet-packaging-material-in-2019
TON = moles of product divided by moles of catalyst used [b] TOF = TON divided
by reaction time
releases/2016/10/p-16-322.html.
Conclusions
9. C. M. Cai, N. Nagane, R. Kumara and C. E. Wyman, Green
Chem, 2014, 16, 3819-3829.
10. B. Seemala, V. Haritos, and A. Tanksale, ChemCatChem,
2016, 8, 640-647.
11. P. Bhaumik and P. L. Dhepe, Catalysis Reviews, 2016, 58, 36-
112.
12. (a) J. Zhang, J. Li, Y. Tang, L. Lin, M. Long, Carbohydr. Polym.
2015, 130, 420-428; (b) Z. Zheng, K. Deng, ACS Catalysis,
2015, 5, 6529-6544.
13. L. Prati, A. Villa, M. Schiavoni, S. Campisi and G. M. Veith,
ChemSusChem, 2013, 6, 609–612.
14. N. K. Gupta, S. Nishimura, A. Takagaki and K. Ebitani, Green
Chem., 2011, 4, 824.
15. S. E. Davis, B. N. Zope and R. J. Davis, Green Chem., 2012, 1,
143.
16. X. Zuo, P. Venkitasubramanian, D. H. Busch and B.
Subramanian, ACS Sustainable Chem. Eng., 2016, 4, 3659-
3668.
17. X. Han, C. Li, X. Liu, Q. Xia, Y. Wang, Green Chem., 2017, 19,
996 - 1004.
18. B. M. Nestl, S. C. Hammer, B. A. Nebel and B. Hauer, Angew.
Chem., Int. Ed., 2014, 53, 3070–3095.
19. M. van Deurzan, F. van Rantwijk and R. Sheldon,
J. Carbohydr. Chem., 1997, 16, 299-309.
20. F. Koopman, N. Wierckx, J. H. de Winde and H. J.
Ruijssenaars, Bioresour. Technol., 2010, 101, 6291-6296.
21. (a) W. P. Dijkman, D. E. Groothuis, and M. W. Fraaije,
Angew. Chem., Int. Ed.,2014, 53, 1-5; (b) W. P. Dijkman,
C.Binda, M. W. Fraaije, , A. Mattevi, ACS Catalysis, 2015, 5,
1833–1839.
22. J. Carro, P. Ferreira, L. Rodríguez, A. Prieto,A. Serrano,
B. Balcells, A. Ardá, J. Jiménez-Barbero, A. Gutiérrez,
R. Ullrich, M. Hofrichter A. T. Martínez, FEBS, 2015, 16, 3218.
The ability to run cascades of enzyme bioconversions in a
single reaction process will be a major driving force in future
exploitation of enzymes in industrial biocatalysis. Until now,
efforts to use isolated enzymes either as single biocatalysts
(HMFO) or as combinations for HMF to FDCA conversion have
often faltered at the aldehyde acid stage (FFCA), because the
alcohol oxidases used require the hydrate form of the
substrate which is disfavoured in the aldehyde-hydrate
equilibrium. We have used E.coli periplasmic oxidase (PaoABC)
to overcome this issue since it can directly oxidise the
aldehyde group of FFCA and does not require the hydrate. In
addition we have shown that through incorporation of horse
radish peroxidase, galactose oxidase M3-5 can be used in
combination for the one-pot continuous bioconversion of HMF
to FDCA to give full conversion at a HMF concentration of
100mM. In the presence of HRP, GOase M3,5 was sufficiently
active to speed up oxidation of HMF to DFF (and HMFCA
FFCA prior to FDCA formation) and this can be balanced with
lower amounts of PaoABC to limit the formation of HMFCA
3 to
3
from HMF. PaoABC could be entrapped as a solgel and re-used
14 times without loss of activity, in conjunction with catalase
CLEA for DFF
2 to FDCA 5 conversion at 200mM substrate
concentration. We have previously shown that FDCA can be
precipitated by acidification of the reaction media following
removal of the enzymes.24 This augurs well for combination
with immobilised GOaseM3,5 and HRP for scale up of the HMF
to FDCA bioconversion and also for product isolation.
23. Y. Qin, Y. Li, M. Zong, H. Wu and N. Li Green Chem, 2015
17, 3718-3722.
,
24. S. M. McKenna, S. Leimkühler, S. Herter, N. J. Turner and
A. J. Carnell, Green Chem, 2015, 17, 3271-3275.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins