Journal of the American Chemical Society
Page 6 of 7
4. Rosen, C. B.; Francis, M. B., Targeting the N terminus for site-selective
protein modification, Nat. Chem. Biol. 2017, 13, 697-705.
Perfluoroaryl-Cysteine SNAr Chemistry Approach to Unprotected Peptide
Stapling, J. Am. Chem. Soc. 2013, 135, 5946-5949; (c) Heinis, C.;
Rutherford, T.; Freund, S.; Winter, G., Phage-Encoded Combinatorial
Chemical Libraries Based on Bicyclic Peptides, Nat. Chem. Biol. 2009, 5,
502-507.
17. (a) Zha, M. R.; Lin, P.; Yao, H. W.; Zhao, Y. B.; Wu, C. L., A phage
display-based strategy for the de novo creation of disulfide-constrained and
isomer-free bicyclic peptide affinity reagents, Chem. Commun. 2018, 54,
4029-4032; (b) Kehoe, J. W.; Kay, B. K., Filamentous phage display in the
new millennium, Chem. Rev. 2005, 105, 4056-4072.
18. Marvin, D. A.; Symmons, M. F.; Straus, S. K., Structure and assembly
of filamentous bacteriophages, Prog. Biophys. Mol. Biol. 2014, 114, 80-
122.
19. Ng, S.; Jafari, M. R.; Matochko, W. L.; Derda, R., Quantitative synthesis
of genetically encoded glycopeptide libraries displayed on M13 phage, ACS
Chem. Biol. 2012, 7, 1482-1487.
1
2
3
4
5
6
7
8
5. (a) Nguyen, D. P.; Elliott, T.; Holt, M.; Muir, T. W.; Chin, J. W.,
Genetically encoded 1,2-aminothiols facilitate rapid and site-specific
protein labeling via a bio-orthogonal cyanobenzothiazole condensation, J.
Am. Chem. Soc. 2011, 133, 11418-11421; (b) Bandyopadhyay, A.;
Cambray, S.; Gao, J., Fast and selective labeling of N-terminal cysteines at
neutral pH via thiazolidino boronate formation, Chem. Sci. 2016, 7, 4589-
4593; (c) Faustino, H.; Silva, M.; Veiros, L. F.; Bernardes, G. J. L.; Gois,
P. M. P., Iminoboronates are efficient intermediates for selective, rapid and
reversible N-terminal cysteine functionalisation, Chem. Sci. 2016, 7, 5052-
5058; (d) Bondalapati, S.; Jbara, M.; Brik, A., Expanding the chemical
toolbox for the synthesis of large and uniquely modified proteins, Nat.
Chem. 2016, 8, 407-418; (e) Conibear, A. C.; Watson, E. E.; Payne, R. J.;
Becker, C. F. W., Native chemical ligation in protein synthesis and semi-
synthesis, Chem. Soc. Rev. 2018, 47, 9046-9068.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6. (a) Fang, G. M.; Wang, J. X.; Liu, L., Convergent Chemical Synthesis of
Proteins by Ligation of Peptide Hydrazides, Angew. Chem. Int. Ed. 2012,
51, 10347-10350; (b) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S.
B., Synthesis of proteins by native chemical ligation, Science 1994, 266,
776-779.
7. Liang, G. L.; Ren, H. J.; Rao, J. H., A biocompatible condensation
reaction for controlled assembly of nanostructures in living cells, Nat.
Chem. 2010, 2, 54-60.
8. Lippert, A. R.; De Bittner, G. C. V.; Chang, C. J., Boronate Oxidation as
a Bioorthogonal Reaction Approach for Studying the Chemistry of
Hydrogen Peroxide in Living Systems, Acc. Chem. Res. 2011, 44, 793-804.
9. IUPAC name: [(alkylsufanyl)(aryl)methylidene]propanedinitrile.
10. Gao, W.; Li, T.; Wang, J. H.; Zhao, Y. B.; Wu, C. L., Thioether-Bonded
Fluorescent Probes for Deciphering Thiol-Mediated Exchange Reactions on
the Cell Surface, Anal. Chem. 2017, 89, 937-944.
11. Serafimova, I. M.; Pufall, M. A.; Krishnan, S.; Duda, K.; Cohen, M. S.;
Maglathlin, R. L.; McFarland, J. M.; Miller, R. M.; Frodin, M.; Taunton, J.,
Reversible targeting of noncatalytic cysteines with chemically tuned
electrophiles, Nat. Chem. Biol. 2012, 8, 471-476.
12. Tan, F.; Shi, B.; Li, J.; Wu, W.; Zhang, J., Design and Synthesis of New
2-Aryl-4,5-Dihydro-thiazole Analogues: In Vitro Antibacterial Activities
and Preliminary Mechanism of Action, Molecules 2015, 20, 20118-20130.
13. (a) Cerda, M. M.; Zhao, Y.; Pluth, M. D., Thionoesters: A Native
Chemical Ligation-Inspired Approach to Cysteine-Triggered H2S Donors,
J. Am. Chem. Soc. 2018, 140, 12574-12579; (b) Cerda, M. M.; Newton, T.
D.; Zhao, Y.; Collins, B. K.; Hendon, C. H.; Pluth, M. D., Dithioesters:
simple, tunable, cysteine-selective H2S donors, Chem. Sci. 2019, 10, 1773-
1779.
20. Jafari, M. R.; Yu, H.; Wickware, J. M.; Lin, Y. S.; Derda, R., Light-
responsive bicyclic peptides, Org. Biomol. Chem. 2018, 16, 7588-7594.
21. Jafari, M. R.; Deng, L.; Kitov, P. I.; Ng, S.; Matochko, W. L.; Tjhung,
K. F.; Zeberoff, A.; Elias, A.; Klassen, J. S.; Derda, R., Discovery of Light-
Responsive Ligands through Screening of a Light-Responsive Genetically
Encoded Library, ACS Chem. Biol. 2014, 9, 443-450.
22. Cory, S.; Adams, J. M., The Bcl2 family: regulators of the cellular life-
or-death switch, Nat. Rev. Cancer 2002, 2, 647-656.
23. Petros, A. M.; Medek, A.; Nettesheim, D. G.; Kim, D. H.; Yoon, H. S.;
Swift, K.; Matayoshi, E. D.; Oltersdorf, T.; Fesik, S. W., Solution structure
of the antiapoptotic protein bcl-2, Proc. Natl. Acad. Sci. U S A 2001, 98,
3012-3017.
24. Crooks, G. E.; Hon, G.; Chandonia, J. M.; Brenner, S. E., WebLogo: A
sequence logo generator, Genome Res. 2004, 14, 1188-1190.
25. (a) Walensky, L. D.; Kung, A. L.; Escher, I.; Malia, T. J.; Barbuto, S.;
Wright, R. D.; Wagner, G.; Verdine, G. L.; Korsmeyer, S. J., Activation of
apoptosis in vivo by a hydrocarbon-stapled BH3 helix, Science 2004, 305,
1466-1470; (b) Stewart, M.L.; Fire, E.; Keating, A.E.; Walensky, L.D., The
MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer,
Nat. Chem. Biol. 2010, 6, 595-601; (c) Andreu-Fernandéz, V.; Genoves, A.;
Lee, T. H.; Stellato, M.; Lucantoni, F.; Orzáez, M.; Mingarro, I.; Aguilar,
M. I.; Pérez-Payá, E., Peptides Derived from the Transmembrane Domain
of Bcl-2 Proteins as Potential Mitochondrial Priming Tools. ACS Chem.
Biol. 2014, 9, 1799-1811; (d) Walensky, L.D., Targeting BAX to drug death
directly, Nat. Chem. Biol. 2019, 15, 657-665.
26. (a) Wade, M.; Li, Y. C.; Wahl, G. M., MDM2, MDMX and p53 in
oncogenesis and cancer therapy, Nat. Rev. Cancer 2013, 13, 83-96; (b)
Suzuki, T.; Motohashi, H.; Yamamoto, M., Toward clinical application of
the Keap1-Nrf2 pathway, Trends Pharmaco. Sci. 2013, 34, 340-346.
27. (a) Kale, S. S.; Villequey, C.; Kong, X. D.; Zorzi, A.; Deyle, K.; Heinis,
C., Cyclization of peptides with two chemical bridges affords large scaffold
diversities, Nat. Chem. 2018, 10, 715-723; (b) Yin, Y.; Fei, Q.; Liu, W.; Li,
Z.; Suga, H.; Wu, C., Chemical and Ribosomal Synthesis of Topologically
Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether
Formation, Angew. Chem. Int. Ed. 2019, 58, 4880-4885.
14. Powers, J. C.; Asgian, J. L.; Ekici, O. D.; James, K. E., Irreversible
inhibitors of serine, cysteine, and threonine proteases, Chem. Rev. 2002,
102, 4639-4750.
15. (a) Yamagishi, Y.; Shoji, I.; Miyagawa, S.; Kawakami, T.; Katoh, T.;
Goto, Y.; Suga, H., Natural product-like macrocyclic N-methyl-peptide
inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed
de novo library, Chem. Biol. 2011, 18, 1562-1570; (b) Morell, M.; Nguyen
Duc, T.; Willis, A. L.; Syed, S.; Lee, J.; Deu, E.; Deng, Y.; Xiao, J.; Turk,
B. E.; Jessen, J. R.; Weiss, S. J.; Bogyo, M., Coupling protein engineering
with probe design to inhibit and image matrix metalloproteinases with
controlled specificity, J. Am. Chem. Soc. 2013, 135, 9139-9148; (c) Sunbul,
M.; Nacheva, L.; Jaschke, A., Proximity-Induced Covalent Labeling of
Proteins with a Reactive Fluorophore-Binding Peptide Tag, Bioconjug.
Chem. 2015, 26, 1466-1469.
16. (a) Jo, H.; Meinhardt, N.; Wu, Y. B.; Kulkarni, S.; Hu, X. Z.; Low, K.
E.; Davies, P. L.; DeGrado, W. F.; Greenbaum, D. C., Development of
alpha-Helical Calpain Probes by Mimicking a Natural Protein-Protein
Interaction, J. Am. Chem. Soc. 2012, 134, 17704-17713; (b) Spokoyny, A.
M.; Zou, Y. K.; Ling, J. J.; Yu, H. T.; Lin, Y. S.; Pentelute, B. L., A
28. (a) Oller-Salvia, B.; Chin, J. W., Efficient Phage Display with Multiple
Distinct Non-Canonical Amino Acids Using Orthogonal Ribosome-
Mediated Genetic Code Expansion, Angew. Chem. Int. Ed. 2019, 58, 10844-
10848; (b) Wang, X. S.; Chen, P. C.; Hampton, J. T.; Tharp, J. M.; Reed,
C. A.; Das, S. K.; Wang, D. S.; Hayatshahi, H. S.; Shen, Y.; Liu, J.; Liu, W.
R., A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library,
Angew. Chem. Int. Ed. 2019, 58, 15904-15909.
ACS Paragon Plus Environment