Allosteric Potentiation from ␣4 C-tail
(␣42)2␣4 nicotinic ACh receptor contributes to desensitization. Br. J.
Pharmacol. 170, 304–316
Br-PBTC selectively reactivates long term desensitized
(␣42)2␣4 nAChRs, it can be used in vivo to distinguish this
subtype from other nAChR subtypes, such as (␣42)2␣5,
(␣42)22, (␣42)23 etc.
12. Rayes, D., De Rosa, M. J., Sine, S. M., and Bouzat, C. (2009) Number and
locations of agonist binding sites required to activate homomeric Cys-
loop receptors. J. Neurosci. 29, 6022–6032
In summary, using the novel type II PAM Br-PBTC, we
learned more about potentiation from the C-tail PAM site. We
found that activation and reactivation increase with higher
PAM occupancy at the C-tail site. It remains to be determined
in vivo how chronic exposure to ACh or agonist drugs in the
presence of Br-PBTC will influence smoldering activation of
nAChRs largely desensitized by agonists. It also remains to be
determined how ligands bound to the ␣4 C-tail interact with
the channel to influence its opening, whether negative allosteric
modulators or allosteric agonists can act from this site, whether
similar sites can be found on other subunits, and whether
ligands for them will prove to be useful drugs.
13. Wang, J., Kuryatov, A., Sriram, A., Jin, Z., Kamenecka, T. M., Kenny, P. J.,
and Lindstrom, J. (2015) An accessory agonist binding site promotes ac-
tivation of ␣42* nicotinic acetylcholine receptors. J. Biol. Chem. 290,
13907–13918
14. Paradiso, K., Zhang, J., and Steinbach, J. H. (2001) The C terminus of the
human nicotinic ␣42 receptor forms a binding site required for potenti-
ation by an estrogenic steroid. J. Neurosci. 21, 6561–6568
15. Jin, X., and Steinbach, J. H. (2011) A portable site: a binding element for
17-estradiol can be placed on any subunit of a nicotinic ␣42 receptor.
J. Neurosci. 31, 5045–5054
16. Wang, F., Gerzanich, V., Wells, G. B., Anand, R., Peng, X., Keyser, K., and
Lindstrom, J. (1996) Assembly of human neuronal nicotinic receptor ␣5
subunits with ␣3, 2, and 4 subunits. J. Biol. Chem. 271, 17656–17665
17. Wang, F., Nelson, M. E., Kuryatov, A., Olale, F., Cooper, J., Keyser, K., and
Lindstrom, J. (1998) Chronic nicotine treatment up-regulates human
␣32 but not ␣34 acetylcholine receptors stably transfected in human
embryonic kidney cells. J. Biol. Chem. 273, 28721–28732
Author Contributions—J. W. and J. L. designed the study and wrote
the paper. J. W. and A. K. designed and constructed plasmids and cell
lines. J. W. and J. N. performed the FlexStation and electrophysiol-
ogy assays. Z. J. and T. M. K. provided the chemical tools. P. J. K.
contributed to discussions of the in vivo use of the PAM. P. J. K., J. L.,
and T. M. K. acquired funding to support this study. All authors ana-
lyzed data, revised, and approved the final version of the manuscript.
18. Gerzanich, V., Kuryatov, A., Anand, R., and Lindstrom, J. (1997) “Orphan”
␣6 nicotinic AChR subunit can form a functional heteromeric acetylcho-
line receptor. Mol. Pharmacol. 51, 320–327
19. Kuryatov, A., Gerzanich, V., Nelson, M., Olale, F., and Lindstrom, J. (1997)
Mutation causing autosomal dominant nocturnal frontal lobe epilepsy
alters Ca2ϩ permeability, conductance, and gating of human ␣42 nico-
tinic acetylcholine receptors. J. Neurosci. 17, 9035–9047
Acknowledgments—We thank Dr. Julian R. A. Wooltorton for advice
on Fig. 12. We thank Aarati Sriram for technical assistance.
20. Ley, C. K., Kuryatov, A., Wang, J., and Lindstrom, J. M. (2014) Efficient
expression of functional (␣62)23 AChRs in Xenopus oocytes from free
subunits using slightly modified ␣6 subunits. PLoS ONE 9, e103244
21. Kuryatov, A., Olale, F. A., Choi, C., and Lindstrom, J. (2000) Acetylcholine
receptor extracellular domain determines sensitivity to nicotine-induced
inactivation. Eur. J. Pharmacol. 393, 11–21
References
1. De Biasi, M., and Dani, J. A. (2011) Reward, addiction, withdrawal to
nicotine. Annu. Rev. Neurosci. 34, 105–130
22. Kuryatov, A., Berrettini, W., and Lindstrom, J. (2011) Acetylcholine recep-
tor (AChR) ␣5 subunit variant associated with risk for nicotine depen-
dence and lung cancer reduces (␣42)2␣5 AChR function. Mol. Pharma-
col. 79, 119–125
2. Lewis, A. S., and Picciotto, M. R. (2013) High-affinity nicotinic acetylcho-
line receptor expression and trafficking abnormalities in psychiatric ill-
ness. Psychopharmacology 229, 477–485
23. Kuryatov, A., and Lindstrom, J. (2011) Expression of functional human
␣623* AChRs in Xenopus oocytes achieved through subunit chimeras
and concatemers. Mol. Pharmacol. 79, 126–140
3. Picciotto, M. R., Lewis, A. S., van Schalkwyk, G. I., and Mineur, Y. S. (2015)
Mood and anxiety regulation by nicotinic acetylcholine receptors: a po-
tential pathway to modulate aggression and related behavioral states. Neu-
ropharmacology 96, 235–243
24. Nelson, M. E., Kuryatov, A., Choi, C. H., Zhou, Y., and Lindstrom, J. (2003)
Alternate stoichiometries of ␣42 nicotinic acetylcholine receptors. Mol.
Pharmacol. 63, 332–341
4. Hurst R., Rollema H., and Bertrand D. (2013) Nicotinic acetylcholine re-
ceptors: from basic science to therapeutics. Pharmacol. Ther. 137, 22–54
5. Zoli, M., Pistillo, F., and Gotti, C. (2015) Diversity of native nicotinic re-
ceptor subtypes in mammalian brain. Neuropharmacology 96, 302–311
6. Williams, D. K., Wang, J., and Papke, R. L. (2011) Positive allosteric mod-
ulators as an approach to nicotinic acetylcholine receptor-targeted ther-
apeutics: advantages and limitations. Biochem. Pharmacol. 82, 915–930
7. Grupe, M., Grunnet, M., Bastlund, J. F., and Jensen, A. A. (2015) Targeting
␣42 nicotinic acetylcholine receptors in central nervous system disor-
ders: perspectives on positive allosteric modulation as a therapeutic ap-
proach. Basic Clin. Pharmacol. Toxicol. 116, 187–200
25. Kuryatov, A., Luo, J., Cooper, J., and Lindstrom, J. (2005) Nicotine acts as
a pharmacological chaperone to up-regulate human ␣42 acetylcholine
receptors. Mol. Pharmacol. 68, 1839–1851
26. Weltzin, M. M., and Schulte, M. K. (2010) Pharmacological characteriza-
tion of the allosteric modulator desformylflustrabromine and its interac-
tion with ␣42 neuronal nicotinic acetylcholine receptor orthosteric li-
gands. J. Pharmacol. Exp. Ther. 334, 917–926
27. Mazzaferro, S., Benallegue, N., Carbone, A., Gasparri, F., Vijayan, R., Big-
gin, P. C., Moroni, M., and Bermudez, I. (2011) Additional acetylcholine
(ACh) binding site at ␣4/␣4 interface of (␣42)2␣4 nicotinic receptor
influences agonist sensitivity. J. Biol. Chem. 286, 31043–31054
8. Gill, J. K., Savolainen, M., Young, G. T., Zwart, R., Sher, E., and Millar, N. S.
(2011) Agonist activation of ␣7 nicotinic acetylcholine receptors via an
allosteric transmembrane site. Proc. Natl. Acad. Sci. U.S.A. 108, 28. Harpsøe, K., Ahring, P. K., Christensen, J. K., Jensen, M. L., Peters, D., and
5867–5872
Balle, T. (2011) Unraveling the high- and low-sensitivity agonist responses
9. Grønlien, J. H., Håkerud, M., Ween, H., Thorin-Hagene, K., Briggs, C. A.,
of nicotinic acetylcholine receptors. J. Neurosci. 31, 10759–10766
Gopalakrishnan, M., and Malysz, J. (2007) Distinct profiles of ␣7 nAChR 29. Zhou, Y., Nelson, M. E., Kuryatov, A., Choi, C., Cooper, J., and Lindstrom,
positive allosteric modulation revealed by structurally diverse chemo-
types. Mol. Pharmacol. 72, 715–724
J. (2003) Human ␣42 acetylcholine receptors formed from linked sub-
units. J. Neurosci. 23, 9004–9015
10. Gill-Thind, J. K., Dhankher, P., D’Oyley, J. M., Sheppard, T. D., and Millar, 30. Krashia, P., Moroni, M., Broadbent, S., Hofmann, G., Kracun, S., Beato, M.,
N. S. (2015) Structurally similar allosteric modulators of ␣7 nicotinic ac-
etylcholine receptors exhibit five distinct pharmacological effects. J. Biol.
Chem. 290, 3552–3562
Groot-Kormelink, P. J., and Sivilotti, L. G., (2010) Human ␣34 neuronal
nicotinic receptors show different stoichiometry if they are expressed in
Xenopus oocytes or mammalian HEK293 cells. PLoS ONE 5, e13611
11. Benallegue, N., Mazzaferro, S., Alcaino, C., and Bermudez, I. (2013) The 31. Jin, X., Bermudez, I., Steinbach, J. H. (2014) The nicotinic ␣5 subunit can
additional ACh binding site at the ␣4(ϩ)/␣4(Ϫ) interface of the
replace either an acetylcholine-binding or nonbinding subunit in the
NOVEMBER 27, 2015•VOLUME 290•NUMBER 48
JOURNAL OF BIOLOGICAL CHEMISTRY 28845