Please do not adjust margins
Chemical Science
Page 7 of 9
DOI: 10.1039/C8SC01833B
Journal Name
ARTICLE
I. Manners, J. Am. Chem. Soc., 2000, 122, 2126‒2127 (ring-
opening protonolysis); (c) A. Schäfer, M. Reißmann, A.
Schäfer, M. Schmidtmann and T. Müller, Chem. Eur. J., 2014,
20, 9381‒9386 (silylene protonation); (d) A. Simonneau, T.
Biberger and M. Oestreich, Organometallics, 2015, 34, 3927‒
3929 (cyclohexadienyl-leaving-group approach); (e) Q.-A.
Chen, H. F. T. Klare and M. Oestreich, J. Am. Chem. Soc.,
2016, 138, 7868‒7871 (hydrosilane protonation).
For a review of substituent redistribution reactions at silicon,
see: D. R. Weyenberg, L. G. Mahone and W. H. Atwell, Ann.
N. Y. Acad. Sci., 1969, 159, 38‒55.
For Lewis acid-catalyzed substituent redistribution reactions
of hydrosilanes, see: (a) J. L. Speier and R. E. Zimmerman, J.
Am. Chem. Soc., 1955, 77, 6395‒6396; (b) M. Khandelwal
The phenyl group in Me2PhSiH turned out to be exchangeable
by other `leaving groups´, such as a benzyl or even a sterically
demanding C6Me5 group. However, two alkyl groups must be
preinstalled in the hydrosilane starting material to steer the
reaction towards formation of Me3Si+[CHB11H5Br6]‒. In
contrast, hydride abstraction of MePh2SiH with only one alkyl
substituent leads to a mixture of different silylium ions, as
exhaustive scrambling to Me3Si+ is kinetically inhibited.
Exchanging the phenyl groups in MePh2SiH by 2,6-
disubstituted aryl groups (e.g. C6Me5) eventually provides
access to sterically congested triarylsilylium ions, as previously
demonstrated by Müller and co-workers.10
6
7
and R. J. Wehmschulte, Angew. Chem. Int. Ed., 2012, 51
7323‒7326; (c) A. Feigl, I. Chiorescu, K. Deller, S. U. H.
,
These general trends provide a solid foundation for the
mechanistic understanding of the substituent redistribution of
silylium ions, thereby enabling the prediction of the outcome
of these exchange reactions. Thus, this process can be used as
a reliable synthetic route not only to triaryl- but also to
trialkylsilylium ions by deliberate choice of the hydrosilane and
counteranion of the trityl salt.
Heidsieck, M. R. Buchner, V. Karttunen, A. Bockholt, A.
Genest, N. Rösch and B. Rieger, Chem. Eur. J., 2013, 19
12526‒12536; (d) R. J. Wehmschulte, M. Saleh and D. R.
Powell, Organometallics, 2013, 32 6812‒6819; (e) R.
,
,
Labbow, F. Reiß, A. Schulz and A. Villinger, Organometallics,
2014, 33, 3223‒3226; (f) J. Chen and E. Y.-X. Chen, Angew.
Chem. Int. Ed., 2015, 54, 6842‒6846; (g) Y. Ma, L. Zhang, Y.
Luo, M. Nishiura and Z. Hou, J. Am. Chem. Soc., 2017, 139
12434–12437.
,
8
For substituent redistribution reactions of silicon cations,
see: (a) C. Eaborn, P. D. Lickiss, S. T. Najim and W. A.
Stańczyk, J. Chem. Soc., Chem. Commun., 1987, 19, 1461‒
1462; (b) N. Choi, P. D. Lickiss, M. McPartlin, P. C. Masangane
and G. L. Veneziani, Chem. Commun., 2005, 6023‒6025; (c)
N. Lühmann, H. Hirao, S. Shaik and T. Müller,
Organometallics, 2011, 30, 4087–4096; (d) K. Müther, P.
Hrobárik, V. Hrobáriková, M. Kaupp and M. Oestreich, Chem.
Eur. J., 2013, 19, 16579‒16594; (e) S. J. Connelly, W.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
L.O. thanks the Fonds der Chemischen Industrie for
a
predoctoral fellowship (2015‒2017), and M.O. is indebted to
the Einstein Foundation (Berlin) for an endowed professorship.
B.P. and M.-H.B. are grateful for the financial support (IBS-R10-
D1) from the Institute of Basic Science. DFT calculations were
performed using high performance computing facility located
in the KAIST campus.
Kaminsky and D. M. Heinekey, Organometallics, 2013, 32
7478–7481. (f) Ref 7e; (g) L. Albers, S. Rathjen, J.
,
Baumgartner, C. Marschner and T. Müller, J. Am. Chem. Soc.,
2016, 138, 6886–6892.
For seminal reports, see: (a) J. B. Lambert, S. Zhang, C. L.
Stern and J. C. Huffmann, Science, 1993, 260, 1917‒1918; (b)
9
C. A. Reed, Z. Xie, R. Bau and A. Benesi, Science, 1993, 262
402‒404.
,
10 (a) A. Schäfer, M. Reißmann, A. Schäfer, W. Saak, D. Haase
and T. Müller, Angew. Chem. Int. Ed., 2011, 50, 12636‒
12638; (b) A. Schäfer, M. Reißmann, S. Jung, A. Schäfer, W.
Notes and references
1
For general reviews of silylium ion chemistry, see: (a) V. Y.
Lee and A. Sekiguchi, in Organosilicon Compounds, ed. V. Y.
Lee, Academic Press, Oxford, 2017, Vol. 1, pp. 197–230; (b)
T. Müller, in Structure and Bonding, ed. D. Scheschkewitz,
Springer, Berlin, 2014, Vol. 155, pp. 107‒162; (c) T. Müller, in
Science of Synthesis Knowledge Updates 2013/3; ed. M.
Oestreich, Thieme, Stuttgart, 2013, pp. 1‒42.
Saak, E. Brendler and T. Müller, Organometallics, 2013, 32
4713‒4722.
,
11 (a) J. B. Lambert and Y. Zhao, Angew. Chem. Int. Ed. Engl.,
1997, 36, 400–401; (b) K.-C. Kim, C. A. Reed, D. W. Elliot, L. J.
Mueller, F. Tham, L. Lin and J. B. Lambert, Science, 2002, 297
825‒827. (c) J. B. Lambert and L. Lin, J. Org. Chem., 2001, 66
8537–8539.
,
,
2
3
4
For silylium ions in catalysis, see: (a) H. F. T. Klare, ACS Catal.,
2017, 7, 6999‒7002; (b) A. Schulz and A. Villiger, Angew.
Chem. Int. Ed., 2012, 51, 4526‒4528; (c) H. F. T. Klare and M.
Oestreich, Dalton Trans., 2010, 39, 9176‒9184.
(a) P. D. Bartlett, F. E. Condon and A. Schneider, J. Am. Chem.
Soc., 1944, 66, 1531–1539; (b) J. Y. Corey and R. West, J. Am.
Chem. Soc., 1963, 85, 2430–2433; (c) J. Y Corey, J. Am. Chem.
Soc., 1975, 97, 3237–3238.
For recent reviews of weakly coordinating anions, see: (a) I.
M. Riddlestone, A. Kraft, J. Schaefer and I. Krossing, Angew.
Chem. Int. Ed., 2018, 57, DOI: 10.1002/anie.201710782; (b)
T. A. Engesser, M. R. Lichtenthaler, M. Schleep and I.
Krossing, Chem. Soc. Rev., 2016, 45, 789–899.
12 Hydride abstraction of MePh2SiH with Ph3C+[B(C6F5)4]‒ was
reported as a clean reaction: J. B. Lambert, S. Zhang, S. M.
Ciro, Organometallics, 1994, 13, 2430‒2443. However, this
result could not be reproduced neither by the Müller (cf. Ref
10b) nor our group.
13 (a) C. A. Reed, Acc. Chem. Res., 1998, 31, 133‒139; (b) C. A.
Reed, Acc. Chem. Res., 2010, 43, 121–128.
14 For the synthesis and crystallographic characterization of
related trimethylsilylium salts, see: (a) Me3Si+[CRB11F11]‒ (R =
H, Et): T. Küppers, E. Bernhardt, R. Eujen, H. Willner and C.
W. Lehmann, Angew. Chem. Int. Ed., 2007, 46, 6346‒6349;
(b) Me3Si(arene)+[B(C6F5)4]‒: M. F. Ibad, P. Langer, A. Schulz
and A. Villiger, J. Am. Chem. Soc., 2011, 133, 21016‒21027.
15 CCDC 1818576 for Me3Si+[CHB11H5Br6]‒, CCDC 1818582 for
5
For further strategies to generate silylium ions, see: (a) J. B.
Lambert, Y. Zhao, H. Wu, W. C. Tse and B. Kuhlmann, J. Am.
Chem. Soc., 1999, 121, 5001‒5008 (allyl-leaving-group
MePh2Si+[CHB11H5Br6]‒,
and
contain
CCDC
the
1818581 for
supplementary
iPr2PhSi+[CHB11H5Br6]‒
approach); (b) M. J. MacLachlan, S. C. Bourke, A. J. Lough and
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins