10.1002/cctc.202001583
ChemCatChem
FULL PAPER
calculations indicate the multiple functions of the catalyst
elucidating the plausible mechanism of chirality transfer and
explaining the observed stereochemical outcome. In particular,
the basic amine unit in the bifunctional catalyst C4 was found to
be responsible for the generation of a low concentration of
reactive thiol from the easily available 2,5-ditianediol. Thus, the
catalyst was involved in the formation of reactive nucleophile
(mercaptoaldehyde). The latter upon deprotonation, forms
hydrogen bonds via oxygen lone pairs of aldehyde and directs the
thiol to form C-S bond stereoselectively.
the factors hampering the stereoselectivity of the reaction
applying thiosquaramide C14. Based on the elaborated
stereochemical model it was devised that the application of the
latter in a catalytic cycle essentially reduces the interactions of the
catalyst with the ketone and directs the reaction to perform without
the assistance of catalyst.
Acknowledgements
National Science Center, Poland is acknowledged for financial
support (Grant No. 2016/22/E/ST5/00046). The allotment of
computer time at the Wrocław Centre of Networking and
Supercomputing (WCSS) is also acknowledged.
Keywords: Organocatalysis • Asymmetric catalysis •
Tetrahydrothiophenes • Squaramides • Density functional
calculations
[1]
a) S. Benetti, C. De Risi, G. P. Pollini, V. Zanirato, Chem. Rev. 2012, 112,
2129–2163; b) P. Przybylski, K. Pyta-Klich, K. Pyta, A. Janas,
Tetrahedron 2018, 74, 6335–6365.
[2]
[3]
F. Zamberlan, A. Fantinati, C. Trapella, Eur. J. Org. Chem. 2018, 25,
3248–3264.
For a selected examples involving tertiary amines, see: a) C. J. O'
Connor, M. D. Roydhouse, A. M. Przybył, M. D. Wall, J. M. Southern, J.
Org. Chem. 2010, 75, 2534–2538; b) N. Baricordi, S. Benetti, V. Bertolasi,
C. De Risi, G. P. Pollini, F. Zamberlan, V. Zanirato, Tetrahedron 2012,
68, 208–213; c) Y. Su, J.-B. Ling, S. Zhang, P.-F. Xu, J. Org. Chem. 2013,
78, 11053–11058; for an example of the reaction performed at elevated
temperature, see: d) J.-B. Ling, Y. Su, H.-L. Zhu, G.-Y. Wang, P.-F. Xu,
Org. Lett. 2012, 14, 1090–1093; for a catalyst-free, water assisted
decomposition of, see: e) J. Song, J. Moss, D.-C. Yang, Z. Guan, Y.-H.
He, RSC Adv. 2014, 4, 54032–54038; for
a review concerning
organocatalytic approach, see: f) B. Mondal, S. Nandi, S. C. Pan, Eur. J.
Org. Chem. 2017, 4666–4677 ; for selected examples of stereoselective
cascade sulfa-Michael/aldol reactions involving 1,4‐Dithiane‐2,5‐
diol, see: g) C. Yu, Y. Zhang, A. Song, Y. Ji and W. Wang, Chem. Eur. J.
2011, 17, 770–774; h) S.‐W. Duan, Y. Li, Y.‐Y. Liu, Y.‐Q. Zou, D. Q. Shi
and W.‐J. Xiao, Chem. Commun. 2012, 48, 5160–5162; i) B.‐L. Zhao, L.
Liu and D.‐M. Du, Eur. J. Org. Chem. 2014, 7850–7858; j) P. Zhou, Y.
Cai, L. Lin, X. Lian, Y. Xia, X. Liu and X. Feng, Adv. Synth. Catal. 2015,
357, 695–700; k) Mahajan, P. Chauhan, M. Blümel, R. Puttreddy, K.
Rissanen, G. Raabe, D. Enders, Synthesis 2016, 48, 1131–1138; l)
Grošelj, U.; Ciber, L.; Gnidovec, J.; Testen, Ž.; Požgan, F.; Štefane, B.;
Tavčar, G.; Svete, J.; Ričko, S. Adv. Synth. Catal. 2019, 361, 5118–5126.
a) A. Przydacz, R. Kowalczyk, Ł. Albrecht, Org. Biomol. Chem. 2017, 15,
9566–9569; b) A. Skrzyńska, S. Frankowski, M. Moczulski, P. Drelich, Ł.
Albrecht, Org. Lett. 2019, 21, 1248–1252.
[4]
[5]
[6]
a) A. A. Golovanov, I. S. Odin, S. S. Zlotskii, Russ. Chem. Rev. 2019, 88,
280–318; b) A. A. Golovanov, D. M. Gusev, I. S. Odin, S. S. Zlotskii,
Chem. Heterocycl. Comp. 2019, 55, 333–348 .
Scheme 3. Formation of tetrahydrothiophenes with three stereocenters
applying various Michael acceptors in reactions catalyzed by C4.
a) Z. Li, X. Li, J.-P. Cheng, Synlett 2019, 30, 1940–1949; for reviews
concerning chiral squaramides, see: b) L. A. Marchetti, L. K. Kumawat,
N. Mao, J. C. Stephens, R. B. P. Elmes, Chem 2019, 5, 1398–1485; c)
B.-L. Zhao, J-H. Li, D-M. Du, Chem. Rec. 2017, 17, 994–1018; d) P.
Chauhan, S. Mahajan, U. Kaya, D. Hack, D. Enders, Adv. Synth. Catal.
2015, 357, 253–281.
The corresponding transition state (4-TS) revealed the
importance of the weak π-stacking interactions of the substituents
of the Michael acceptor and catalyst to achieve the favorable
orientation of the reagents. Hence, it was concluded that the sulfa-
Michael addition was a crucial step determining the overall
stereoselectivity, in which generation of the C-S bond in a
selective manner greatly influenced the further aldol reaction, with
the assistance of intramolecular hydrogen bond between enol and
the aldehyde. Our KS-DFT calculations also helped to decipher
[7]
For a recent review concerning halogen-bonding, see: a) J. Bramberger,
F. Ostler, O. G. Mancheño, ChemCatChem 2019, 11, 5198–5211; b) R.
L. Sutar, S. M. Huber, ACS Catal. 2019, 9, 9622–9639; for weak
interactions with fluorine, see: c) H.-J. Schneider, Chem. Sci. 2012, 3,
1381–1394; d) C. Dalvit, A. Vulpetti, Chem. Eur. J. 2016, 22, 7592–7601;
e) P. A. Champagne, J. Desroches, J.-F. Paquin, Synthesis 2015, 47,
306–322; f) M. G. Holl, M. D. Struble, P. Singal, M. A. Siegler, T. Letcka,
Angew. Chem. Int. Ed. 2016, 55, 8266–8269.
7
This article is protected by copyright. All rights reserved.