Angewandte
Chemie
[6] a) S. Knapp, D. S. Myers, J. Org. Chem. 2002, 67, 2995 – 2999;
CHCl3/MeOH) reduced the resulting disulfides allowing the
direct isolation of pure unprotected glycosyl thiols 31a–c in
63–71% yields (Table 3). These results importantly demon-
strated application to unprotected sugars providing a method
to prepare glycosyl thiols suitable for protein glycosylation.
Following this key result, it was envisaged that our newly
developed thionation procedure would offer a direct route
from free sugars to glycoproteins by using our protein
glycosylation strategy (Scheme 2). A variety of representa-
tive, free sugars (Table 4), including those isolated from N-
(galabiose Gala1,4Gal)[27] and O-linked (Xyla1,3Glc) glyco-
proteins,[28] were treated with LR after the optimized
conditions.[29] The subsequent addition of these sugars to a
selenenylsulfide-activated single-cysteine mutant protein[8]
(subtilisin Bacillus lentus, SBLS156C), gave complete con-
version to the corresponding glycoproteins (Table 4).
In summary, we have established that Lawessonꢀs reagent
may be used in a direct and general manner for the
preparation of glycosyl thiols from the corresponding anome-
ric lactols/reducing sugars. Notably, this procedure has also
been shown to be fully compatible with unprotected sugars,
the products of which can be directly used in our selenenyl-
sulfide-mediated protein glycosylation strategy.[8] The result is
a one-pot method for direct protein glycosylation. Further
investigations into the use of LR are currently being explored
by this laboratory.
b) X. Zhu, K. Pachamuthu, R. R. Schmidt, J. Org. Chem. 2003,
68, 5641 – 5651; c) X. Zhu, R. R. Schmidt, Chem. Eur. J. 2004, 10,
875 – 887; d) D. A. Thayer, N. Y. Henry, M. C. Galan, C. H.
Wong, Angew. Chem. 2005, 117, 4672 – 4675; Angew. Chem. Int.
Ed. 2005, 44, 4596 – 4599.
[7] a) Y. Zhu, W. A. van der Donk, Org. Lett. 2001, 3, 1189 – 1192;
b) Y. Zhu, M. D. Gieselman, H. Zhou, O. Averin, W. A. van der
Wonk, Org. Biomol. Chem. 2003, 1, 3304– 3315.
[8] D. P. Gamblin, P. Garnier, S. van Kasteren, N. J. Oldham, A. J.
Fairbanks, B. G. Davis, Angew. Chem. 2004, 116, 846 – 851;
Angew. Chem. Int. Ed. 2004, 43, 828 – 833.
[9] M. M. Ponpipom, W. K. Hagmann, L. A. OꢀGrady, J. J. Jackson,
D. D. Wood, H. J. Zweerink, J. Med. Chem. 1990, 33, 861 – 867.
[10] P. J. Garegg, Adv. Carbohydr. Chem. Biochem. 1997, 52, 179 –
205.
[11] a) B. G. Davis, S. J. Ward, P. M. Rendle, Chem. Commun. 2001,
189 – 190; b) E. J. Grayson, S. J. Ward, A. L. Hall, P. M. Rendle,
D. P. Gamblin, A. S. Batsanov, B. G. Davis, J. Org. Chem. 2005,
70, 9740 – 9754.
[12] a) B. Capon, Chem. Rev. 1969, 69, 407 – 498; b) S. T. Crooke,
R. M. Snyder, T. R. Butt, D. J. Ecker, H. S. Allaudeen, B. Monia,
C. K. Mirabelli, Biochem. Pharmacol. 1986, 35, 3423 – 3431;
c) M. Stallings-Mann, L. Jamieson, R. P. Regala, C. Weems, N. R.
Murray, A. P. Fields, Cancer Res. 2006, 66, 1767 – 1774.
[13] a) Y. C. Lee, C. P. Stowell, M. J. Krantz, Biochemistry 1976, 15,
3956 – 3963; b) Y. C. Lee, C. P. Stowell, Methods Enzymol. 1982,
83, 278 – 288.
[14] J. M. MacDougall, X. D. Zhang, W. E. Polgar, T. V. Khroyan, L.
Toll, J. R. Cashman, J. Med. Chem. 2004, 47, 5809 – 5815.
[15] a) B. D. Johnston, B. M. Pinto, J. Org. Chem. 2000, 65, 4607 –
4617; b) O. B. Wallace, D. M. Springer, Tetrahedron Lett. 1998,
39, 2693 – 2694.
Received: February 21, 2006
Published online: May 4, 2006
[16] W. Koenigs, E. Knorr, Ber. Dtsch. Chem. Ges. 1901, 34, 957 – 981.
[17] F. M. Ibatulin, K. A. Shabalin, J. V. Jꢁnis, A. G. Shavva, Tetrahe-
dron Lett. 1998, 39, 7961 – 7964.
[18] S. A. Holick, L. Anderson, Carbohydr. Res. 1974, 34, 208 – 213.
[19] In one instance a yield of 67% was reported for this method.
However the use of HFand H2S requires special precautions and
is not mild or convenient; see: J. Defaye, A. Gadelle, C.
Pedersen, Carbohydr. Res. 1991, 217, 51 – 58.
Keywords: carbohydrates · glycoproteins · glycosyl thiols ·
lawesson reagent · protein modifications
.
[1] a) A. Varki, Glycobiology 1993, 3, 97 – 130; b) R. A. Dwek,
Chem. Rev. 1996, 96, 683 – 720; c) P. M. Rudd, T. Elliot, P.
Cresswell, I. A. Wilson, R. A. Dwek, Science 2001, 291, 2370 –
2376; d) B. G. Davis, Chem. Rev. 2002, 102, 579 – 601; e) J. B.
Lowe, J. D. Marth, Annu. Rev. Biochem. 2003, 72, 643 – 691;
f) K. J. Doores, D. P. Gamblin, B. G. Davis, Chem. Eur. J. 2006,
12, 656 – 665.
[2] a) A. Helenius, M. Aebi, Science 2001, 291, 2364– 2369; b) R.
Kannagi, Curr. Opin. Struct. Biol. 2002, 12, 599 – 608.
[3] K. Nishiwaki, Y. Kubota, Y. Chigira, S. K. Roy, M. Suzuki, M.
Schvarzstein, Y. Jigami, N. Hisamoto, K. Matsumoto, Nat. Cell
Biol. 2004, 6, 31 – 37.
[20] J. B. L. Damm, J. P. Kamerling, G. W. K. van Dedem, J. F. G.
Vliegenthart, Glycoconjugate J. 1987, 4, 129 – 144.
[21] a) B. S. Pedersen, S. Scheibye, W. H. Nilson, S. -O. Lawesson,
Bull. Soc. Chim. Belg. 1978, 87, 223 – 228; b) T. B. Rauchfuss,
G. A. Zank, Tetrahedron Lett. 1986, 27, 3445 – 3448.
[22] a) M. P. Cava, M. I. Levinson, Tetrahedron 1985, 41, 5061 – 5087;
b) M. Jesberger, T. P. Davis, L. Barner, Synthesis 2003, 1929 –
1958.
[23] a) T. Nishio, J. Chem. Soc. Chem. Commun. 1989, 205 – 206; b) T.
Nishio, J. Chem. Soc. Perkin Trans. 1 1993, 1113 – 1117.
[24] W. Schneider, H. Leonhardt, Ber. Dtsch. Chem. Ges. 1929, 62,
1384– 1389.
[25] D. R. Mootoo, P. Konradsson, U. Udodong, B. Fraser-Reid, J.
Am. Chem. Soc. 1988, 110, 5583 – 5584.
[26] Reaction of crude product with DMF and the use of activated
carbon in an attempt to remove the excess of Lawessonꢀs reagent
failed.
[4] J. B. Lowe, Cell 2001, 104, 809 – 812.
[5] a) B. G. Davis, R. C. Lloyd, J. B. Jones, J. Org. Chem. 1998, 63,
9614– 9615; b) W. M. Macindoe, A. H. van Oijen, G.-J. Boons,
Chem. Commun. 1998, 847 – 848; c) B. G. Davis, M. A. T.
Maughan, M. P. Green, A. Ullman, J. B. Jones, Tetrahedron:
Asymmetry 2000, 11, 245 – 262; d) B. G. Davis, Chem. Commun.
2001, 351 – 352; e) D. P. Gamblin, P. Garnier, S. J. Ward, N. J.
Oldham, A. J. Fairbanks, B. G. Davis, Org. Biomol. Chem. 2003,
1, 3642 – 3644; f) G. M. Watt, J. Lund, M. Levens, V. S. K. Kolli,
R. Jefferis, G.-J. Boons, Chem. Biol. 2003, 10, 807 – 814; g) P. M.
Rendle, A. Seger, J. Rodrigues, N. J. Oldham, R. R. Bott, J. B.
Jones, M. M. Cowan, B. G. Davis, J. Am. Chem. Soc. 2004, 126,
4750 – 4751; h) T. Hotchkiss, H. B. Kramer, K. J. Doores, D. P.
Gamblin, N. J. Oldham, B. G. Davis, Chem. Commun. 2005,
4264 – 4266.
[27] N. Susuki, K. H. Khoo, C. M. Chen, H. C. Chen, Y. C. Lee, J.
Biol. Chem. 2003, 278, 46293 – 46246–46306.
[28] a) H. Nishimura, S. I. Kawabata, W. Kisiel, S. Hase, T. Itenaka, T.
Takao, Y. Shimonishi, S. Iwanaga, J. Biol. Chem. 1989, 264,
20320 – 20325; b) K. Fukase, S. Hase, T. Itenaka, S. Kusumoto,
Bull. Chem. Soc. Jpn. 1992, 65, 436 – 445.
[29] The crude thiol aldoses could be extracted after the reaction
following partition between DCM and water.
Angew. Chem. Int. Ed. 2006, 45, 4007 –4011
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4011