4
10
Synlett
A. I. Subota et al.
Letter
formed in the presence of ca. 30 mol% of concentrated
aqueous HCl. The procedure19 worked well with all the pyr-
idines 2 shown in Scheme 4, except compound 2f contain-
ing the tertiary amine function. To obtain the correspond-
ing diamine 1f, conversion of 2f into hydrobromide salt was
necessary prior to hydrogenation.
(5) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(6) Ritchie, T. J.; Macdonald, S. J. F.; Peace, S.; Pickett, S.; Luscombec,
C. N. Med. Chem. Commun. 2012, 3, 1062.
(
(
7) Bemis, G. W.; Murcko, M. A. J. Med. Chem. 1996, 39, 2887.
8) (a) Macchia, M.; Cervetto, L.; Demontis, G. C.; Longoni, B.;
Minutolo, F.; Orlandini, E.; Ortore, G.; Papi, C.; Sbrana, A.;
Macchia, B. J. Med. Chem. 2003, 46, 161. (b) Morie, T.; Adachi, K.;
Niidome, K.; Kawashima, K.; Shimizu, I.; Ishii, D. EP 1403235,
2004. (c) Duveau, D. Y.; Yasgar, A.; Wang, Y.; Hu, X.;
Kouznetsova, J.; Brimacombe, K. R.; Jadhav, A.; Simeonov, A.;
Thomas, C. J.; Maloney, D. J. Bioorg. Med. Chem. Lett. 2014, 24,
630.
R1
R1 R2
H2, Pd/C
R2
OH
1
2 M HCl
N
Br
N
(30 mol%)
H
(9) Zacharie, B.; Moreau, N.; Dockendorff, C. J. Org. Chem. 2001, 66,
264.
2
1
MeOH
5
(10) Pedrosa, R.; Andrés, C.; Duque-Soladana, J. P.; Rosón, C. D. Tetra-
hedron: Asymmetry 2000, 11, 2809.
(11) (a) Cheng, Y.-X.; Luo, X.; Tomaszewski, M. US 2007259888,
2
007. (b) Gedig, T.; Dettner, K.; Seifert, K. Tetrahedron 2007, 63,
N
H
N
H
N
H
2670.
1
a, 87%
1b, 83%
1c, 80%
(12) Bourrain, S.; Hunt, P.; Huscroft, I.; Kulagowski, J.; London, C.;
Naylor, E.; Raubo, P.; Seward, E. US 2004229864, 2004.
Me
N
(13) (a) Macchia, M.; Cervetto, L.; Demontis, G. C.; Longoni, B.;
Minutolo, F.; Orlandini, E.; Ortore, G.; Papi, C.; Sbrana, A.;
Macchia, B. J. Med. Chem. 2003, 46, 161. (b) Ablordeppey, S. Y.;
Fischer, J. B.; Law, H.; Glennon, R. A. Bioorg. Med. Chem. 2002,
10, 2759. (c) Liu, C.; Han, N.; Song, X.; Qiu, J. Eur. J. Org. Chem.
N
H
N
N
H
H
2010, 5548.
1d, 74%
1e, 90%
1f, 45%
(see the SI)
(14) (a) Melnyk, P.; Gasche, J.; Thal, C. Synth. Commun. 1993, 23,
2
727. (b) Gallagher, T.; Karig, G.; Spencer, J. A. Org. Lett. 2001, 3,
Ph
Ph
835.
(
15) (a) Marsais, F.; Laferdrix, B.; Gungor, T.; Mallet, M.; Queguiner,
G. J. Chem. Res., Miniprint 1982, 2863. (b) Couture, A.;
Grandclaudon, P.; Huguerre, E. Synthesis 1989, 456. (c) Romero,
D. L.; Morge, R. A.; Biles, C.; Berrios-Pena, N.; May, P. D.; Palmer,
J. R.; Johnson, P. D.; Smith, H. W.; Busso, M.; Tan, C. K.; Voorman,
R. L.; Reusser, F.; Althaus, I. W.; Downey, K. M.; So, A. G.;
Resnick, L.; Tarpley, W. G.; Aristoff, P. A. J. Med. Chem. 1994, 37,
N
H
N
N
H
H
1g, 71%
1h, 66%
1i, 85%
Scheme 4 Synthesis of piperidines 1a–i
In conclusion, a convenient two-step reaction sequence
was developed for introducing (cyclo)alkyl substituents at
the C-3 position of the piperidine ring, which allowed for
the multigram preparation of 3-(cyclo)alkylpiperidines.
The method is an illustration of ‘sp –sp via sp –sp ’ cou-
pling concept, which should be re-evaluated for other areas
of organic chemistry in order to achieve the goals of lead-
oriented synthesis.
9
99.
(16) Bridger, G.; McEachern, E.; Skerlj, R.; Schols, D. US 2004209921,
2004.
(
17) Representative Procedure for the Preparation of 21-(2-Bro-
3
3
2
3
mopyridin-3-yl)cyclopentanol (2a)
To a cooled (–78°С) solution of diisopropylamine (18.3 g, 25.4
mL, 0.181 mol) in absolute THF (700 mL), n-BuLi (69 mL, 23% in
hexane, 2.5 M, 0.172 mol) was added dropwise under argon
atmosphere. The mixture was stirred at –78 °C for 1 h, and a
solution of 2-bromopyridine (23.1 g, 14.3 mL, 0.146 mmol) in
dry THF (150 mL) was added dropwise over 20 min. The reac-
tion mixture was kept at –78 °С for 90 min, and precooled (–78 °С)
solution of cyclopentanone (26.6 g, 28 mL, 0.316 mol) in dry
THF (70 mL) was added in one portion. The mixture was stirred
at –78 °С for additional 80 min and quenched with sat. aq
Supporting Information
Supporting information for this article is available online at
http://dx.doi.org/10.1055/s-0034-1379502.
S
u
p
p
ortioIgnfrm oaitn
S
u
p
p
ortioIgnfrm oaitn
NaHCO (140 mL) at –78°С, then warmed to r.t. and diluted with
3
EtOAc (1 L). The organic phase was separated, washed with sat.
aq NaHCO (2 × 150 mL) and brine (200 mL), dried over Na SO ,
References and Notes
3
2
4
and concentrated in vacuo to give 22.5 g of residue. The product
was purified by flash chromatography (gradient hexane–EtOAc
as an eluent), followed by recrystallization from pentane. The
sample of 2a of analytical purity was obtained by additional
recrystallization from hexanes. Yield 14.2 g (40%); white nee-
(
1) Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem. Int. Ed.
2012, 51, 1114.
(
2) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.
3) Mann, A. In Practice of Medicinal Chemistry; Wermuth, C. G., Ed.;
Academic Press/Elsevier: Amsterdam, 2008, 3rd ed.; 363–379.
4) Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. Chem. Biol.
Drug. Des. 2014, 83, 450.
(
+
dles; mp 80–82 °C (hexanes). MS (ESI): m/z = 242/244 [MH ].
(
Anal. Calcd for C10H12BrNO: C, 49.61; H, 5.00; Br, 33.00; N, 5.79.
1
Found: C, 49.37; H, 5.27; Br, 32.74; N, 5.70. H NMR (400 MHz,
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 408–411