Organic Letters
Letter
enantiomeric ratio (er) of 12:1 consistent with the selectivity of
Griebenow, N.; Knorr, A.; Wunder, F.; Li, V. M. J.; Kroh, W.;
Baerfacker, L. PCT Int Appl WO 2012004258, 2012.
(2) (a) See ref 1a. (b) Kobayashi, K.; Ono, R.; Yuba, S.; Hiyoshi, H.;
Umezu, K. Heterocycles 2015, 91, 1177. (c) Cheung, M.; Harris, P. A.;
Lackey, K. E. Tetrahedron Lett. 2001, 42, 999. (d) Sekhar, N. M.;
Acharyulu, P. V. R.; Anjaneyulu, Y. Tetrahedron Lett. 2011, 52, 4140.
1
2i. In the process of the transformation, the ester auxiliary 10i
18
is cleaved and can be recovered during purification. The
method enables access to substrates of type 14 without any
additional linear steps and represents a significant improvement
19
in overall yield of 14.
(e) Vaid, R. K.; Spitler, J. T.; Boini, S.; May, S. A.; Hoying, R. C.
In summary, regioselective 1,4-conjugate addition with
organometallic reagents to highly activated, tetrasubsituted
α,α-dinitrile alkenes affords a general, flexible approach to
highly functionalized, sterically congested malononitrile build-
ing blocks. Good to excellent stereoselectivity was achieved
with ester-based chiral auxiliaries, affording up to >20:1
diastereomeric ratios for a variety of nucleophiles. The high
selectivity observed with aryl-containing auxiliaries is attributed
to cation−π interactions between the Grignard dimer and the
auxiliary. While these synthons should be of broad synthetic
utility, they bear strong application in the preparation of 5,5-
disubstituted pyrrolopyrimidines and -pyrimidinones, a class of
bioactive molecules of considerable interest as exemplified by
Synthesis 2012, 44, 2396. (f) Day, J. E.; Frederickson, M.; Hogg, C.;
Johnson, C. N.; Meek, A.; Northern, J.; Reader, M.; Reid, G. Synlett
2015, 26, 2570. (g) Kokai, E.; Nagy, J.; Toth, T.; Kupai, J.; Huszthy,
P.; Simig, G.; Volk, B. Monatsh. Chem. 2016, 147, 767.
(3) Raghavan, S.; Stelmach, J. E.; Smith, C. J.; Li, H.; Whitehead, A.;
Waddell, S. T.; Chen, Y.-H.; Miao, S.; Ornoski, O. A.; Garfunkle, J.;
Liao, X.; Chang, J.; Han, X.; Guo, J.; Groeper, J. A.; Brockunier, L. L.;
Rosauer, K.; Parmee, E. R. PCT Int Appl WO 2011149921, 2011.
(4) See ref 1d and references cited therein.
(5) (a) Reekie, T. A.; Donckele, E. J.; Trapp, N.; Diederich, F. Eur. J.
Org. Chem. 2015, 2015, 7264 and references therein. (b) Hall, H. K.,
Jr.; Sentman, R. C. J. Org. Chem. 1982, 47, 4572. (c) Donckele, E. J.;
Reekie, T. A.; Trapp, N.; Diederich, F. Eur. J. Org. Chem. 2016, 2016,
716.
(6) Tyutin, V. Y.; Chkanikoc, N. D.; Kolomietz, A. F.; Fokin, A. V. J.
Fluorine Chem. 1991, 51, 323.
14.
ASSOCIATED CONTENT
Supporting Information
(7) For preparation of compound 5b, see: Yamada, Y.; Iguchi, K.;
Hosaka, K.; Hagiwara, K. Synthesis 1974, 1974, 669.
■
*
S
(8) (a) Formation of dimer of 5b was reported, but a structure was
not proposed; see ref 7. (b) Formation of byproduct 6 was accelerated
when stored neat or at room temperature for prolonged periods of
time. Compound 5b was stored as a 1 M solution in benzene at −4 to
−
20 °C.
9) This selectivity trend is in line with previous reports of reactions
X-ray data for compound 14 (CIF)
spectra for all new compounds (PDF)
(
with substrate 5a in which the position β to the dinitrile appears to
react preferentially. See ref 5a,b.
(10) 5:1 α/β selectivity was observed; see the SI.
(
11) For an example of phenylcyclohexanol as a chiral ester
AUTHOR INFORMATION
■
*
*
appendage on a kilogram scale, see: Song, J. J.; Tan, Z.; Xu, J.;
Reeves, J. T.; Yee, N. K.; Ramdas, R.; Gallou, F.; Kuznich, K.;
DeLattre, L.; Lee, H.; Feng, X.; Senanyake, C. H. J. Org. Chem. 2007,
72, 292.
ORCID
(
12) SFC separation was used to prepare enantiomerically pure
auxiliaries, but chiral syntheses have been reported.
(13) 2-Substituted aryl analogues were prone to elimination during
(
(
15) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J.
Notes
Phys. Chem. B 2011, 115, 14556.
The authors declare no competing financial interest.
(16) (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
(
b) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
009, 113, 6378.
17) The absolute stereochemistry of 12i was assigned according to
2
(
ACKNOWLEDGMENTS
■
We gratefully acknowledge Richard Ball (Merck & Co., Inc.)
and Andrew Brunskill (Merck & Co., Inc.) for X-ray
crystallography support for structure 14, Ryan Cohen (Merck
the known stereochemistry of 8c and 14. Both 12i and 8c→9e led to
(18) See the SI for details.
&
Co., Inc.) for NMR support for 6, and Leo Joyce (Merck &
(19) The absolute configuration of 14 was determined by X-ray
crystallography, and the enantiomer formed was evaluated by SFC
chiral chromatography; see the SI.
Co., Inc.) for VCD support for 8c. We also thank Jinchu Liu
(
Merck & Co., Inc.) for chiral SFC separations support.
REFERENCES
■
(
1) (a) For a review on pyrrolopyrimidines, see: De Coen, L. M.;
Heugebaert, T. S. A.; Garcia, D.; Stevens, C. S. Chem. Rev. 2016, 116,
80. (b) Mohamed, M. S.; Fathallah, S. S. Mini-Rev. Org. Chem. 2014,
11, 477. (c) Miwa, T.; Hitaka, T.; Akimoto, H.; Nomura, H. J. Med.
Chem. 1991, 34, 555. (d) Taylor, E. C.; Liu, B. J. Org. Chem. 2003, 68,
938. (e) Sun, L.; Cui, J.; Liang, C.; Zhou, Y.; Nematalla, A.; Wang, X.;
Chen, H.; Tang, C.; Wei, J. Bioorg. Med. Chem. Lett. 2002, 12, 2153.
f) Chakka, N.; Bregman, B.; Nguyen, H. N.; Buchanan, J. L.; Feric, E.;
9
(
Ligutti, J.; Liu, D.; McDermott, A.; Zou, A.; McDonough, S. I.;
Dimauro, E. F. Bioorg. Med. Chem. Lett. 2012, 22, 2052. (g) See refs
2c,f and 3. (h) Follmann, M.; Stasch, J. P.; Redlich, G.; Ackerstaff, J.;
D
Org. Lett. XXXX, XXX, XXX−XXX