4
L. Saikia et al. / Catalysis Communications 19 (2012) 1–4
Table 3
Acknowledgments
Comparison of catalytic activity of modified Montmorillonite supported Ni0-nanoparticles
with several known catalysts.
The authors are grateful to Dr. P. G. Rao, Director, North East Institute
of Science and Technology (CSIR), Jorhat, Assam, India, for his kind per-
mission to publish the work. Dr. P. Sengupta, Head, Materials Science
Division is acknowledged for his constant support and encouragement.
Thanks are also due to CSIR, New Delhi for the financial support
(Network Project NWP 0010 and OLP-3700 Non Network Project).
Entry
Condition
Yield (%)
Ref.
1
2
3
4
5
6
Yb(OTf)3, EtOH, rt, 5 h
Sc(OTf)3, EtOH, rt, 4 h
CAN, EtOH, rt, 1 h
90
93
92
93
93
95
[16]
[17]
[19]
[21]
[22]
This work
p-TSA, EtOH, rt, 2 h
HY-Zeolite, CH3CN, rt, 2 h
Modified Mont. supported Ni0-nanoparticles,
solvent-free, 0.25 h
References
[1] D. Mauzeral, F.H. Westheimer, Journal of the American Chemical Society 77 (1955)
2261.
[2] F. Bossert, H. Meyer, E. Wehinger, Angewandte Chemie (International Edition in
English) 20 (1981) 762.
4. Conclusion
[3] H. Nakayama, Y. Kasoaka, Heterocycles 42 (1996) 901.
[4] T. Godfraid, R. Miller, M. Wibo, Pharmacological Reviews 38 (1986) 321.
[5] A. Sausins, G. Duburs, Heterocycles 27 (1988) 279.
[6] D. Zhang, L.Z. Wu, L. Zhou, X. Han, Q.Z. Yang, L.P. Zhang, C.H. Tung, Journal of the
American Chemical Society 126 (2004) 3440.
[7] S. Margarita, O. Estael, V. Yamila, P. Beatriz, M. Lourdes, Q. Margarita, L.S. Jose, N.
Hector, B. Norbert, M.P. Oswald, Tetrahedron 55 (1999) 875.
[8] V.K. Ahluwalia, B. Goyal, U. Das, Journal of Chemical Research, Miniprint 7 (1997)
1701.
In conclusion, we have reported that four-component Hantzsch
condensation reaction can effectively be performed with modified
Montmorillonite supported Ni0 nanoparticle catalyst without using
any organic solvent. The yield of Hantzsch polyhydroquinoline deriva-
tives obtained was up to 95% at room temperature. So, the present pro-
cedure provides an efficient and very simple method for the synthesis
of polyhydroquinoline derivatives. The advantage of this method is its
facile conditions and the product can be isolated very easily with excel-
lent purity and that too without the use of column chromatography and
the catalyst is recyclable. The simplicity of the present process makes it
an interesting alternative to other approaches. The catalyst is expected
to contribute to the development of environmentally benign methods
and forms a part of the nanomaterial chemistry.
[9] S.B. Sapkal, K.F. Shelke, B.B. Shingate, M.S. Shingare, Tetrahedron Letters 50
(2009) 1754.
[10] L. Ohberg, J. Westman, Synlett 1296 (2001) 1296.
[11] G. Sabitha, G.S.K.K. Reddy, C.S. Reddy, J.S. Yadav, Tetrahedron Letters 44 (2003) 4129.
[12] R. Sridhar, P.T. Perumal, Tetrahedron 61 (2005) 2465.
[13] S.-J. Ji, Z.-Q. Jiang, J. Lu, T.-P. Loh, Synlett 831 (2004) 831.
[14] N.N. Karade, V.H. Budhewar, S.V. Shinde, W.N. Jadhav, Letters in Organic Chemistry 4
(2007) 16.
[15] A. Dondoni, A. Massi, E. Minghini, V. Bertolasi, Tetrahedron 60 (2004) 2311.
[16] L.M. Wang, J. Sheng, L. Zhang, J.W. Han, Z. Fan, H. Tian, C.T. Qian, Tetrahedron 61
(2005) 1539.
5. 1H NMR of few representative compounds
[17] J.L. Donelson, R.A. Gibbs, S.K. De, Journal of Molecular Catalysis A: Chemical 256
(2006) 309.
[18] M. Maheswara, V. Siddaiah, G.L. Damu, C. Venkata Rao, ARKIVOC 2 (2006) 201.
[19] M.M. Heravi, K. Bakhtiri, N.M. Javadi, F.F. Bamoharram, M. Saeedi, H.A. Oskooi,
Journal of Molecular Catalysis A: Chemical 264 (2007) 50.
[20] S.R. Cherkupally, R. Mekalan, Chemical & Pharmaceutical Bulletin 56 (2008) 1002.
[21] S. Ko, C.F. Yao, Tetrahedron 62 (2006) 7293.
[22] B. Das, B. Ravikanth, R. Ramu, B.V. Rao, Chemical & Pharmaceutical Bulletin 4
(2006) 1044.
[23] G. Song, B. Wang, X. Wu, Y. Kang, L. Yang, Synthetic Communications 35 (2005) 2875.
[24] A. Saxena, A. Kumar, S. Mojumdar, Journal of Molecular Catalysis A: Chemical
269 (2007) 35.
[25] F. Alonso, P. Riente, M. Yus, Tetrahedron 64 (2008) 1847.
[26] F. Alonso, P. Riente, M. Yus, Tetrahedron Letters 49 (2008) 1939.
[27] F. Alonso, P. Riente, M. Yus, Synlett 1289 (2008) 1289.
[28] A. Dhakshinamoorty, K. Pitchumani, Tetrahedron Letters 49 (2008) 1818.
[29] L. Zank, J. Zielinski, Applied Catalysis A: General 334 (2008) 268.
[30] J.E. Gillott, Clay in Engineering Geology, 1st ed. Elsevier, Amsterdam, 1968.
[31] P. Sharma, S.K. Bhorodwaj, D.K. Dutta, Journal of Scientific Conference Proceedings
1 (2009) 40.
Compound 4a: 1H NMR (300 MHz, CDCl3) 0.96 (s, 3H), 1.07 (s, 3H),
1.18 (t, 3H), 2.15–2.36 (m, 4H), 2.38 (s, 3H), 4.06 (q, 2H), 5.07
(s, 1H), 5.8 (s, 1H), 7.06–7.34 (m, 5H);
Compound 4e: 1H NMR (300 MHz, CDCl3) 0.94 (s, 3H), 1.08
(s, 3H), 1.21 (t, 3H), 2.11–2.26 (m, 3H), 2.30–2.38 (m, 4H), 3.67
(q, 2H), 5.15 (s, 1H), 6.88 (s, 1H), 7.34 (t, 1H);
Compound 4i: 1H NMR (300 MHz, CDCl3) 0.96 (s, 3H), 1.07 (s, 3H),
1.21 (t, 3H), 2.13–2.28 (m, 3H), 2.34–2.38 (m, 4H), 3.75 (s, 3H),
4.07 (q, 2H), 5.03 (s, 1H), 5.82 (s, 1H), 6.72–6.76 (m, 2H),
7.21–7.24 (m, 2H);
Compound 4j: 1H NMR (300 MHz, CDCl3) 0.97 (s, 3H), 1.08 (s, 3H),
1.23 (t, 3H), 2.10–2.26 (m, 3H), 2.30–2.37 (m, 4H), 2.87 (s, 6H),
4.08 (q, 2H), 4.96 (s, 1H), 5.88 (s, 1H), 6.62 (d, J=8.2 Hz, 2H),
7.16 (d, 2H).
[32] D. Dutta, B.J. Borah, L. Saikia, M.G. Pathak, P. Sengupta, D.K. Dutta, Applied Clay
Science 53 (2011) 650.