European Journal of Organic Chemistry
10.1002/ejoc.202000094
COMMUNICATION
Zhabinskii, V. A. Khripach, Chem. Commun. 2018, 54, 2800-2803; d) I. Novikau, A.
Hurski, Tetrahedron 2018, 74, 1078-1084; e) L. R. Mills, L. M. Barrera Arbelaez, S. A.
L. Rousseaux, J. Am. Chem. Soc. 2017, 139, 11357-11360; f) N. Tumma, E.
Gyanchander, J. K. Cha, J. Org. Chem. 2017, 82, 4379-4385.
3] for the recent examples of metal-catalyzed oxidation of 1,2-disubstituted
cyclopropanols, see: a) B. D. W. Allen, M. D. Hareram, A. C. Seastram, T. McBride, T.
Wirth, D. L. Browne, L. C. Morrill, Org. Lett. 2019, 21, 9241-9246; b) A. Nikolaev, C.
Y. Legault, M. Zhang, A. Orellana, Org. Lett. 2018, 20, 796-799; c) Y. Deng, N. I.
Kauser, S. M. Islam, J. T. Mohr, Eur. J. Org. Chem. 2017, 2017, 5872-5879; d) Q. Tan,
Z. Yang, D. Jiang, Y. Cheng, J. Yang, S. Xi, M. Zhang, Angew. Chem. Int. Ed. 2019, 58,
Conclusions
To conclude, we have successfully employed a photoredox
catalytic system consisting of an organic acridinium photocatalyst
and diphenyl disulfide in the isomerization of 1,2-disubstituted
cyclopropanols to linear ketones. The reaction conditions are mild
and neutral enough to tolerate sensitive functional groups,
including the stereocenter next to the carbonyl function. The
protocol does not require toxic reagents. Moreover, utilizing this
[
6420-6424; e) Y.-H. Zhang, W.-W. Zhang, Z.-Y. Zhang, K. Zhao, T.-P. Loh, Org. Lett.
2019, 21, 5101-5105; for the oxidation of cyclopropanols with 4-OH-TEMPO, see: f)
J.-L. Zhan, M.-W. Wu, D. Wei, B.-Y. Wei, Y. Jiang, W. Yu, B. Han, ACS Catalysis 2019,
9, 4179-4188.
method, we have successfully prepared ketone 12m, which could
not be prepared by the known[7a] approach.
[
[
4] a) K. Jia, F. Zhang, H. Huang, Y. Chen, J. Am. Chem. Soc. 2016, 138, 1514-1517; b) M.
Ji, Z. Wu, C. Zhu, Chem. Commun. 2019, 55, 2368-2371; c) S. Bloom, D. D. Bume, C.
R. Pitts, T. Lectka, Chem. Eur. J. 2015, 21, 8060-8063; d) Ł. Woźniak, G. Magagnano,
P. Melchiorre, Angew. Chem. Int. Ed. 2018, 57, 1068-1072; for the visible-light
promoted ring-opning of trimethylsilyloxycyclopropanes, see: e) H. E. Burdge, T.
Oguma, T. Kawajiri, R. A. Shenvi, ChemRxiv DOI: 10.26434/chemrxiv.8263415.v1; for
an example of the photochemical ring-opening of 1-PMB substituted cyclopropanol,
see: f) L. Huang, T. Ji, M. Rueping, J. Am. Chem. Soc. 2020, 142, 3532-3539.
5] for the recent publications on radical ring-opening of 1-substituted cyclopropanols,
see: a) J. Sheng, J. Liu, L. Chen, L. Zhang, L. Zheng, X. Wei, Org. Chem. Front. 2019, 6,
1471-1475; b) C. Che, Z. Qian, M. Wu, Y. Zhao, G. Zhu, J. Org. Chem. 2018, 83, 5665-
5673; c) Z. Ye, X. Cai, J. Li, M. Dai, ACS Catalysis 2018, 8, 5907-5914; d) Y. A. Konik,
G. Z. Elek, S. Kaabel, I. Järving, M. Lopp, D. G. Kananovich, Org. Biomol. Chem. 2017,
Experimental Section
General procedure for the visible-light-promoted ring-opening of 1,2-
disubstituted cyclopropanols:
Dry 1,2-dichloroethane (0.7 mL), was added to the 4 mL vial containing
cyclopropanol 11 (0.17 mmol, 1 equiv), 9-mesityl-10-phenylacridinium
tetrafluoroborate 14 (3.9 mg, 8.5 μmol, 5 mol%) and diphenyl disulfide (7.5
mg, 0.034 mmol, 20 mol%) under Ar atmosphere. The resulting mixture
was placed at a distance of about 5 cm from 450 nm LED strip and
irradiated with stirring at room temperature for 12 h. The solvent was
evaporated under reduced pressure and the residue was purified by
15, 8334-8340; e) Y.-S. Feng, Y.-J. Shu, P. Cao, T. Xu, H.-J. Xu, Org. Biomol. Chem.
2017, 15, 3590-3593; f) G. Z. Elek, V. Borovkov, M. Lopp, D. G. Kananovich, Org. Lett.
2017, 19, 3544-3547; g) D. C. Davis, C. W. Haskins, M. Dai, Synlett 2017, 28, 913-918;
h) G. Z. Elek, K. Koppel, D. M. Zubrytski, N. Konrad, I. Järving, M. Lopp, D. G.
Kananovich, Org. Lett. 2019, 21, 8473-8478; i) J. Liu, E. Xu, J. Jiang, Z. Huang, L.
Zheng, Z.-Q. Liu, Chem. Commun., 2020, 56, 2202-2205.
6] for examples of the radical opening of unstrained cycloalkanols, see: a) H.G. Yayla,
H. Wang, K.T. Tarantino, H.S. Orbe, R.R. Knowles, J. Am. Chem. Soc. 2016, 138,
column chromatography on silica gel (5-15% Et
2
O/PE).
[
[
.
10794-10797; b) J.J. Guo, A. Hu, Y. Chen, J. Sun, H. Tang, Z. Zuo, Angew. Chem. Int.
Ed., 2016, 55, 15319-15322; c) D. Wang, J. Mao, C. Zhu, Chem. Sci., 2018, 9, 5805-
[
4f]
5809; see also Ref.
7] a) K. A. Keaton, A. J. Phillips, Org. Lett. 2007, 9, 2717-2719; b) K. A. Keaton, A. J.
Phillips, Org. Lett. 2008, 10, 1083-1086; c) J. McCabe, A. J. Phillips, Tetrahedron 2013,
Acknowledgments
69, 5710-5714; d) S.-G. Li, Y. Wu, Chem. Asian J. 2013, 8, 2792-2800.
[
[
8] C. Cassani, G. Bergonzini, C.-J. Wallentin, Org. Lett. 2014, 16, 4228-4231.
9] J. D. Griffin, M. A. Zeller, D. A. Nicewicz, J. Am. Chem. Soc. 2015, 137, 11340-11348.
We are grateful for the financial support from the National
academy of sciences of Belarusian (project 2019-27-120) and the
Belarusian Foundation for Fundamental Research (projects
X19PM-074, X20-054).
[10] a) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035-10074; b) C. K.
Prier, D. W. C. MacMillan, in Visible Light Photocatalysis in Organic Chemistry, 2018,
pp. 299-333.
[
11] a) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166; b) S.
Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko, H. Lemmetyinen, J. Am.
Chem. Soc. 2004, 126, 1600-1601.
Keywords: cyclopropanols • ring-opening • ketones •
photochemistry • radicals
[
12] T. M. Nguyen, D. A. Nicewicz, J. Am. Chem. Soc. 2013, 135, 9588-9591.
[13] We also tried to alter the selectivity of the acridinium-catalyzed isomerization in
the absence of PhSSPh (Table 1, entry 2) by addition of 2,6-lutidine, but under the
modified conditions, only recovery of the starting material was observed.
[
1] a) O. G. Kulinkovich, Chem. Rev. 2003, 103, 2597-2632; b) A. Nikolaev, A. Orellana,
Synthesis 2016, 48, 1741-1768; c) L. R. Mills, S. A. L. Rousseaux, Eur. J. Org. Chem.
[
14]a) Q. Liu, B. You, G. Xie, X. Wang, Org. Biomol. Chem. 2020, 18, 191-204; b) M.
Simaan, I. Marek, Beilstein J. Org. Chem. 2019, 15, 752-760.
2019, 2019, 8-26; d) C. Ebner, E. M. Carreira, Chem. Rev. 2017, 117, 11651-11679;
e) X. Cai, W. Liang, M. Dai, Tetrahedron 2019, 75, 193-208; f) J. Le Bras, J. Muzart,
Tetrahedron 2020, 76, 130879.
[
2] a) J. Yang, Y. Shen, Y. J. Lim, N. Yoshikai, Chemical Science 2018, 9, 6928-6934; b) H.
Liu, Z. Fu, S. Gao, Y. Huang, A. Lin, H. Yao, Adv. Synth. Catal. 2018, 360, 3171-3175;
c) M. V. Barysevich, V. V. Kazlova, A. G. Kukel, A. I. Liubina, A. L. Hurski, V. N.
This article is protected by copyright. All rights reserved.