Photochemical & Photobiological Sciences
Paper
EtOH mixture. Then compound 1 (1 equiv.), sodium ascorbate
(1.5 equiv.) and copper sulfate (1.5 equiv.) were added to this
solution. The resulting mixture was stirred for 24 h at room
temperature. Upon completion of the reaction, the mixture
was filtered, extracted with ethyl acetate, concentrated under
vacuum and then subjected to column chromatography to
obtain the desired product.
Notes and references
1 R. K. Mahajan, R. Kaur, V. Bhalla, M. Kumar, T. Hattori
and S. Miyano, Mercury(II) sensors based on calix [4] arene
derivatives as receptor molecules, Sens. Actuators, B, 2008,
130, 290–294.
2 A. Renzoni, F. Zino and E. Franchi, Mercury levels along
the food chain and risk for exposed populations, Environ.
Res., 1998, 77, 68–72.
7-Diethylamino-3(-4-((qunoline-8-yloxy)methyl)-1H-1,2,3-
1
triazol-yl)-2H-chromen-2-one (R1). H NMR of R1 (400 MHz,
CDCl3): δ 8.95 (s, 1H), 8.78 (s, 1H), 8.34 (s, J 1H), 8.12 (d, 8.0
Hz, 1H), 7.43–7.38 (m, 5H), 6.66 (d, 8.0 Hz, 1H), 6.62 (s, 1H),
3 D. Wu, W. Huang, Z. Lin, C. Duan, C. He, S. Wu and
D. Wang, Highly sensitive multiresponsive chemosensor
for selective detection of Hg2+ in natural water and
different monitoring environments, Inorg. Chem., 2008, 47,
7190–7201.
5.62 (s, 2H), 3.44 (q, J = 8.0 Hz, 4H), 1.23 (t, J = 8.0 Hz, 6H); 13
C
NMR (CDCl3, 125 MHz): δ 156.5, 155.4, 153.5, 151.2, 149.0,
143.2, 139.9, 135.6, 134.6, 129.6, 129.1, 126.3, 126.2, 124.2,
121.3, 120.1, 119.9, 109.5, 96.6, 44.6, 29.2, 12.0; HRMS (ESI)
(R1): calculated for C25H23N5O3 m/z 442.1873 [M + H]+, found:
442.1874; FT-IR (KBr, cm−1): 3131 (triazole C–H), 1730 (CvO
str.), 1609 (CvN str.), 1400 (C–N str.), m.p 155–157 °C,
(163.8 mg, yield 68%).
4 X. Chen, K.-H. Baek, Y. Kim, S.-J. Kim, I. Shin and J. Yoon,
A
selenolactone-based fluorescent chemodosimeter to
monitor mecury/methylmercury species in vitro and
in vivo, Tetrahedron, 2010, 66, 4016–4021.
5 T. Anand, G. Sivaraman and D. Chellappa, Hg2+ mediated
quinazoline ensemble for highly selective recognition of
Cysteine, Spectrochim. Acta, Part A, 2014, 123, 18–24.
6 E. G. Pacyna, J. M. Pacyna, F. Steenhuisen and S. Wilson,
Global anthropogenic mercury emission inventory for
2000, Atmos. Environ., 2006, 40, 4048–4063.
7 T. W. Clarkson and L. Magos, The toxicology of mercury
and its chemical compounds, Crit. Rev. Toxicol., 2006, 36,
609–662.
8 K. A. Anderson, Mercury analysis in environmental
samples by cold vapor techniques, in Encyclopedia of
Analytical Chemistry: Applications, Theory and Instrumentation,
2006.
9 J. Lo, J. Yu, F. Hutchison and C. Wai, Solvent extraction of
dithiocarbamate complexes and back-extraction with
mercury(II) for determination of trace metals in seawater
by atomic absorption spectrometry, Anal. Chem., 1982, 54,
2536–2539.
7-Diethylamino-3(-4-((phenoxy)methyl)-1H-1,2,3-triazol-yl)-
1
2H-chromen-2-one (R2). H NMR (500 MHz, CDCl3): δ 8.64 (s,
1H), 8.39 (s, 1H), 7.41 (d, 1H, J = 14.5 Hz), 7.30 (2H, d, J = 7.5
Hz), 7.03 (2H, d, J = 8.5 Hz), 6.97 (t, J = 6.5 Hz, 1H), 6.68 (d, J =
9.0 Hz, 1H), 6.56 (s, 1H), 5.27 (s, 2H), 3.46 (q, J = 7.0 Hz, 4H),
1.24 (t, J = 7.0 Hz, 6H); 13C NMR (100 MHz, CDCl3): 168.0,
166.2, 158.2, 158.1, 144.7, 144.4, 129.8, 124.5, 124.3, 121.4,
121.3, 114.8, 62.5, 51.0, 14.0; HRMS (ESI) (R2): calculated for
C22H22N4O3 m/z 391.1764 [M + H]+, found: 391.4071; FT-IR
(KBr, cm−1): 3130, 1712, 1609, 1400, m.p 129–131 °C,
(206.8 mg, yield 70%).
7-Diethylamino-3(-4-((napthalene-1-yloxy)-1H-1,2,3-triazol-yl)-
1
2H-chromen-2-one (R3). H NMR (400 MHz, CDCl3): δ 8.71 (s,
1H), 8.41 (s, 1H), 8.29 (d, 1H, J = 6.8 Hz), 7.48 (s, 1H),
7.43–7.39 (5H, m), 7.03 (d, J = 6.8 Hz, 1H), 6.68 (d, J = 7.5 Hz,
1H), 6.56 (s, 1H), 5.46 (s, 2H), 3.46 (q, J = 6.8 Hz, 4H), 1.24 (t, J
= 5.6 Hz, 6H); 13C NMR (100 MHz, CDCl3): 157.0, 155.9, 154.1,
151.7, 130.1, 127.4, 126.5, 125.8, 125.3, 123.9, 122.2, 116.8, 10 A. Panja and K. Ghosh, Selective sensing of Hg2+ via sol–
110.2, 107.0, 105.3, 97.0, 62.2, 45.0, 12.4; HRMS (ESI) (R3): cal-
culated for C26H24N4O3 m/z 441.1921 [M + H]+, found:
gel transformation of
Supramol. Chem., 2018, 30, 722–729.
a cholesterol-based compound,
441.1915; FT-IR (cm−1): 3134, 1712, 1609, 1400. m.p 11 A. Panja and K. Ghosh, 4-Hydroxybenzaldehyde derived
147–149 °C, (169.2 mg, yield 70%).
Schiff base gelators: case of the sustainability or rupturing
of imine bonds towards the selective sensing of Ag+ and
Hg 2+ ions via sol–gel methodology, New J. Chem., 2019,
43, 5139–5149.
Conflicts of interest
12 S. Mondal, R. Raza and K. Ghosh, Cholesterol linked ben-
zothiazole: A versatile gelator for detection of picric acid
and metal ions such as Ag+, Hg2+, Fe3+and Al3+ under
different conditions, New J. Chem., 2019, 43, 10509–10516.
13 A. Hemamalini and T. M. Das, Design and synthesis of
sugar-triazole low molecular weight gels as mercury ion
sensor, New J. Chem., 2013, 37, 2419–2425.
There are no conflicts to declare.
Acknowledgements
SD acknowledges SERB-DST (project no. EMR/2016/002183),
Govt. of India for the financial assistance and DST-FIST
(project no. SR/FST/CSI-256) for providing a grant to install 14 G. Aragay, J. Pons and A. Merkoçi, Recent trends in macro-,
400 MHz NMR facility in the Department of Chemistry, IIT
(ISM), Dhanbad. Authors are thankful to Prof. Samita Basu
micro-, and nanomaterial-based tools and strategies for
heavy-metal detection, Chem. Rev., 2011, 111, 3433–3458.
and Dr Padmaja P Mishra, Saha Institute of Nuclear Physics, 15 K. Kaur, R. Saini, A. Kumar, V. Luxami, N. Kaur, P. Singh
Kolkata, India, for providing TCSPC facility.
and S. Kumar, Chemodosimeters: an approach for detec-
This journal is © The Royal Society of Chemistry and Owner Societies 2020
Photochem. Photobiol. Sci.