Organic Letters
Letter
Cho, E. J. Acc. Chem. Res. 2016, 49, 2284. (e) Matsui, J. K.; Lang, S. B.;
Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563. (f) Xie, J.; Jin,
H.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193. (g) Marzo, L.;
Indeed, the reaction of 1a with bis(pinacolato)diboron, B2pin2
(2e) proceeded in the presence of 5 mol % of A in DMSO (0.1
M), albeit, in a slow 37% conversion to the boronated product
4ae in 12 h, with a significant level of 1a remaining unreacted.
Interestingly, the use of sacrificial electron donors significantly
shortened the reaction time. Among the tertiary amines
evaluated, DBU showed the best reactivity to give 4ae in 92%
yield (0.1 mmol scale; see Table S3 in the Supporting
Information for the optimization process). Under the optimized
conditions, we investigated the substrate scope of the trans-
formation for the preparation of arylboronates by using various
aryl halides (1) and B2pin2 (2e) (Table 3). Similar to the C−C
bond formations, the C−B bond formation also proceeded well
with various aryl halides (−Cl, −Br, −I) containing both
electron-withdrawing and electron-donating substituents.
In conclusion, we developed a methodology for the
organophotocatalytic C−C and C−B bond formation with
aryl halides. The photoexcited 3,7-di([1,1′-biphenyl]-4-yl)-10-
(4-(trifluoromethyl)phenyl)-10H-phenoxazine (A) has highly
negative reduction potential and is capable of reducing aryl
halides, including aryl chlorides, and generates the correspond-
ing aryl radical intermediates. The developed transformations
encompass a broad substrate scope, are mild and chemo-
selective, and deliver a wide range of functionalized arenes.
̈
Pagire, S. K.; Reiser, O.; Konig, B. Angew. Chem., Int. Ed. 2018, 57,
10034.
(4) For some reviews on metal-free visible light photocatalysis, see:
(a) Marin, M. L.; Santos-Juanes, L.; Arques, A.; Amat, A. M.; Miranda,
M. A. Chem. Rev. 2012, 112, 1710. (b) Fukuzumi, S.; Ohkubo, K. Org.
Biomol. Chem. 2014, 12, 6059. (c) Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014,
114, 9219.
̈
(5) (a) Hari, D. P.; Konig, B. Angew. Chem., Int. Ed. 2013, 52, 4734.
(b) Liu, Y.-X.; Xue, D.; Wang, J.-D.; Zhao, C.-J.; Zou, Q.-Z.; Wang, C.;
Xiao, J. Synlett 2013, 24, 507. (c) Ghosh, I.; Marzo, L.; Das, A.; Shaikh,
̈
R.; Konig, B. Acc. Chem. Res. 2016, 49, 1566. (d) Witzel, S.; Xie, J.;
Rudolph, M.; Hashmi, A. S. K. Adv. Synth. Catal. 2017, 359, 1522.
(e) Xie, J.; Sekine, K.; Witzel, S.; Kramer, P.; Rudolph, M.; Rominger,
F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2018, 57, 16648. (f) Witzel,
S.; Sekine, K.; Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2018, 54,
13802.
(6) Reactions of aryl halides under the photocatalytic conditions:
(a) Da Silva, J. P.; Jockusch, S.; Turro, N. J. Photochem. Photobiol. Sci.
2009, 8, 210. (b) Dichiarante, V.; Fagnoni, M.; Albini, A. Green Chem.
2009, 11, 942. (c) Kim, H.; Lee, C. Angew. Chem., Int. Ed. 2012, 51,
12303. (d) Nguyen, J. D.; D’Amato, E. M.; Narayanam, J. M. R.;
Stephenson, C. R. J. Nat. Chem. 2012, 4, 854. (e) Cheng, Y.; Gu, X.; Li,
P. Org. Lett. 2013, 15, 2664. (f) Ghosh, I.; Ghosh, T.; Bardagi, J. I.;
̈
Konig, B. Science 2014, 346, 725. (g) Discekici, E. H.; Treat, N. J.;
Poelma, S. O.; Mattson, K. M.; Hudson, Z. M.; Luo, Y.; Hawker, C. J.;
de Alaniz, J. R. Chem. Commun. 2015, 51, 11705. (h) Devery, J. J.;
Nguyen, J. D.; Dai, C.; Stephenson, C. R. J. ACS Catal. 2016, 6, 5962.
(i) Yin, H.; Jin, Y.; Hertzog, J. E.; Mullane, K. C.; Carroll, P. J.; Manor,
B. C.; Anna, J. M.; Schelter, E. J. J. Am. Chem. Soc. 2016, 138, 16266.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge at
■
S
̈
(j) Ghosh, I.; Konig, B. Angew. Chem., Int. Ed. 2016, 55, 7676.
Experimental details, additional experimental results,
analytical data of the synthesized compounds, and
(k) Poelma, S. O.; Burnett, G. L.; Discekici, E. H.; Mattson, K. M.;
Treat, N. J.; Luo, Y.; Hudson, Z. M.; Shankel, S. L.; Clark, P. G.;
Kramer, J. W.; Hawker, C. J.; Read de Alaniz, J. J. Org. Chem. 2016, 81,
̈
7155. (l) Bardagi, J. I.; Ghosh, I.; Schmalzbauer, M.; Ghosh, T.; Konig,
B. Eur. J. Org. Chem. 2018, 2018, 34.
AUTHOR INFORMATION
Corresponding Authors
■
(7) Reactions of aryl chlorides under the photocatalytic conditions:
̈
(a) Ghosh, I.; Shaikh, R. S.; Konig, B. Angew. Chem., Int. Ed. 2017, 56,
̈
8544. (b) Bardagi, J. I.; Ghosh, I.; Schmalzbauer, M.; Ghosh, T.; Konig,
ORCID
B. Eur. J. Org. Chem. 2018, 2018, 34. (c) Matsubara, R.; Yabuta, T.; Md
Idros, U.; Hayashi, M.; Ema, F.; Kobori, Y.; Sakata, K. J. Org. Chem.
2018, 83, 9381. (d) Wang, Q.; Poznik, M.; Li, M.; Walsh, P. J.; Chruma,
J. J. Adv. Synth. Catal. 2018, 360, 2854. (e) Schmalzbauer, M.; Ghosh, I.;
Notes
̈
Konig, B. Faraday Discuss. 2019, 215, 364.
S.; Back, J.; Choi, E. M.; Lee, E.; Son, K.-s. Eur. Polym. J. 2019, 117, 347.
The authors declare no competing financial interest.
̈
(9) Hari, D. P.; Konig, B. Chem. Commun. 2014, 50, 6688.
(10) For some reviews on Suzuki coupling reactions, see: (a) Lennox,
A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412. (b) Hussain, I.;
Capricho, J.; Yawer, M. A. Adv. Synth. Catal. 2016, 358, 3320.
(c) Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S. Green Chem.
2019, 21, 381.
(11) For the synthesis of arylboronates from aryl halides, see:
(a) Chen, K.; Cheung, M. S.; Lin, Z.; Li, P. Org. Chem. Front. 2016, 3,
875. (b) Chen, K.; Zhang, S.; He, P.; Li, P. Chem. Sci. 2016, 7, 3676.
(c) Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 5248. (d) Mfuh, A.
M.; Doyle, J. D.; Chhetri, B.; Arman, H. D.; Larionov, O. V. J. Am.
Chem. Soc. 2016, 138, 2985. (e) Mfuh, A. M.; Nguyen, V. T.; Chhetri,
B.; Burch, J. E.; Doyle, J. D.; Nesterov, V. N.; Arman, H. D.; Larionov,
O. V. J. Am. Chem. Soc. 2016, 138, 8408. (f) Zhang, L.; Jiao, L. J. Am.
Chem. Soc. 2019, 141, 9124.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the support from National Research
F o u n d a t i o n o f K o r e a f o r K . - s . S . ( N R F -
2015R1D1A1A01057228 and NRF2019R1A2C2007825) and
E.J.C. (NRF-2012M3A7B4049657, NRF-2014011165, and
NRF-2017R1A2B2004082). This work was also supported by
research fund of Chungnam National University.
REFERENCES
■
(1) (a) Link, A.; Sparr, C. Chem. Soc. Rev. 2018, 47, 3804. (b) Ito, H.;
Segawa, Y.; Murakami, K.; Itami, K. J. Am. Chem. Soc. 2019, 141, 3.
(2) Ackermann, L. Modern Arylation Methods; John Wiley & Sons,
2009.
(3) For some recent reviews on visible light photocatalysis, see:
(a) Stephenson, C. R. J.; Yoon, T. R.; MacMillan, D. W. C. Visible Light
Photocatalysis in Organic Chemistry; John Wiley & Sons, 2018.
̀
̈
(b) CambiE, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noel,
T. Chem. Rev. 2016, 116, 10276. (c) Romero, N. A.; Nicewicz, D. A.
Chem. Rev. 2016, 116, 10075. (d) Chatterjee, T.; Iqbal, N.; You, Y.;
D
Org. Lett. XXXX, XXX, XXX−XXX