H.J. Gericke et al. / Inorganica Chimica Acta 363 (2010) 2222–2232
2231
dimerised oxidised product, including [(C
Ru (C H )(C H R)] , was found.
5 5 5 4
5
H R)(C
4
5
H
5
)RuIII–
III
2+
Acknowledgement
The authors acknowledge the UFS for financial support and Dr. I.
Chambrier for supplying samples of 3.
Appendix A. Supplementary material
ꢀ
ꢀ
Fig. 6. Space filling diagram of BðC
6
F
5
Þ
and PF anions. The longest distance
4
6
ꢀ
ꢀ
between diagonal F-atoms on BðC
6
F
5
Þ4 and PF6 anions approach 10 and 3.3 A,
respectively.
III
[
(H)(C
5
H
5
)Ru (C
H
5 4
)]
2
which also has a Ru–C
r
-bond, similar in
References
structure to what was found for free ruthenocene [21] and analo-
gous free osmocene [22]. At 0 °C, a two-electron reduction of iso-
[1] (a) D.H. Evans, K.M. O’Connell, R.A. Peterson, M.J. Kelly, J. Chem. Educ. 60
(1983) 291;
III
III
III
2+
mers of the Ru dimer [(C
5 4 5 5 5 5 5 4
H R)(C H )Ru –Ru (C H )(C H R)]
(
(
b) P.T. Kissinger, W.R. Heineman, J. Chem. Educ. 60 (1983) 702;
c) J.J. Van Benshoten, J.Y. Lewis, W.R. Heineman, J. Chem. Educ. 60 (1983) 772;
back to the ruthenocenyl species is associated with wave 3red
.
The species E1 is considered to be reduced at lower potentials
than K1, because carbonyl (C@O) substituted metallocenes are oxi-
dised at larger (more positive) potentials than alcohol (OH) substi-
tuted metallocenes [17e].
(d) G.A. Mobbot, J. Chem. Educ. 60 (1983) 697.
2] M. Lovric, in: F. Scholz (Ed.), Electroanalytic Methods: Guide to Experiments
and Applications, Springer, Berlin, 2005 (Chapter I.2, p. 23 and Chapter II.3, pp.
[
1
11–133).
[3] (a) D.E. Richardson, H. Taube, Inorg. Chem. 20 (1981) 1287;
b) A. Auger, J.C. Swarts, Organometallics 26 (2007) 102;
(
All of the above described results were made possible by the
n
(c) A. Auger, A.J. Muller, J.C. Swarts, Dalton Trans. (2007) 3623.
4] M. Schnippering, A. Zahn, S.-X. Liu, C. Leumann, S. Decurtins, D.J. Fermin, Chem.
Commun. (2009) 5552.
5] E. Fourie, J.C. Swarts, D. Lorcy, N. Bellec, Inorg. Chem. 49 (2010) 952.
6] D.G. Leaist, Electrochim. Acta 36 (1991) 309.
uses of the CH
2
Cl
2
/[N( Bu)
4
][B(C
F
6 5
)
4
] solvent electrolyte system
[
to minimise ion paring interactions between electrolyte anions
and positively charged oxidised substrates, and by careful choice
of the solvent. Fig. 6 shows a space filling diagram of the
[
[
[
7] J. Conradie, T.S. Cameron, M.A.S. Aquino, G.J. Lamprecht, J.C. Swarts, Inorg.
Chim. Acta 358 (2005) 2530.
ꢀ
ꢀ
BðC
6
F
5
Þ
and PF6 anions generated by the program Chemcraft
4
ꢀ
[
8] Leading publications demonstrating the influence and use of [B(C
6
F
5 4
) ]
and
on the same scale.
ꢀ
ꢀ
[B{(C
6
H
3
)(CF
3
2
) }
4
]
ions, the complimentary role of associated cations with
Upon visualising the size and structure of the ½BðC
6
F
5
Þ ꢃ anion,
4
different charge densities, as well as some solvent effects may be found in (a) F.
Barriere, R.U. Kirss, W.E. Geiger, Organometallics 24 (2005) 48. and references
therein;
ꢀ
it is easy to comprehend how the negative charge on ½BðC
6
F
5
Þ ꢃ
4
ꢀ
can be distributed over a much larger volume than in ½PF
6
ꢃ
be-
(
(
b) S. Trupia, A. Nafady, W.E. Geiger, Inorg. Chem. 42 (2003) 5480;
c) F. Barriere, N. Camire, W.E. Geiger, U.T. Mueller-Westerhoff, R. Sanders, J.
6 5
cause of the electron withdrawing effects of each of the C F
groups, thereby leading to a much smaller charge density on the
anion.
Am. Chem. Soc. 124 (2002) 7262;
(d) F. Barriere, W.E. Geiger, J. Am. Chem. Soc. 128 (2006) 3980;
(
(
(
e) A. Nafady, T.T. Chin, W.E. Geiger, Organometallics 25 (2006) 1654;
f) D.S. Chong, J. Slote, W.E. Geiger, J. Electroanal. Chem. 630 (2009) 28;
g) M.G. Hill, W.M. Lamanna, K.R. Mann, Inorg. Chem. 30 (1991) 4687.
4
. Conclusions
[
9] G. Gritzner, J. Kuta, Pure Appl. Chem. 56 (1984) 461.
[
10] R.R. Gagne, C.A. Koval, G.C. Lisensky, Inorg. Chem. 19 (1980) 2855.
In this paper we have clearly shown how the use of CH
2
Cl
2
/
[11] Leading references describing the electrochemical activity and behaviour of
ferrocene and decamethylferrocene in a multitude of organic solvents is (a) I.
Noviandri, K.N. Brown, D.S. Fleming, P.T. Gulyas, P.A. Lay, A.F. Masters, L.
Phillips, J. Phys. Chem. B 103 (1999) 6713;
n
[
N( Bu)
4
][B(C
F
6 5
)
4
] as solvent/supporting electrolyte results in bet-
ter resolution and a clearer electrochemical picture of multiple re-
dox processes associated with positively charged analytes. Under
strong reducing conditions, the larger negative potential window
(b) N.G. Connelly, W.E. Geiger, Chem. Rev. 96 (1996) 877.
[
12] (a) C.E.J. Van Rensburg, E. Kreft, J.C. Swarts, S.R. Dalrymple, D.M. Macdonald,
M.W. Cooke, M.A.S. Aquino, Anticancer Res. 22 (2002) 889;
of THF can append results from CH
comes positively charge upon reduction. In CH
B(C the complex [Ru -FcCOO) CH OH)
2 2
Cl , especially if the analyte be-
(
b) M.W. Cooke, C.A. Murphy, S.T. Cameron, J.C. Swarts, M.A.S. Aquino, Inorg.
Chem. Comm. 3 (2000) 721;
c) M.W. Cooke, T.S. Cameron, K.N. Robertson, J.C. Swarts, M.A.S. Aquino,
n
2
Cl
2
/[N( Bu)
4
]
(
[
6
F
)
5 4
]
2
(l
4
ꢁ(CH
3
2
2
][PF ], 2,
6
Organometallics 21 (2002) 5962.
+
exhibited all four Fc/Fc couples in well-resolved form, while in
[
13] M.J. Cook, I. Chambrier, G. White, E. Fourie, J.C. Swarts, Dalton Trans. (2009)
1136.
ꢀ
the presence of PF6 , they coalesced into two groups of electron
[
[
14] K.C. Kemp, E. Fourie, J. Conradie, J.C. Swarts, Organometallics 27 (2008) 357.
15] (a) I. Chambrier, D.L. Hughes, J.C. Swarts, B. Isare, M.J. Cook, Chem. Commun.
transfer processes. For the biscadmium trisphthalocyaninato com-
plex 3, all six possible oxidation processes could be identified. Sol-
vent coordination by THF and ion pair formation between
3
504 (2006);
(b) I. Chambrier, G. White, M.J. Cook, Chem. Eur. J. 13 (2007) 7608.
[16] R.J. Lesuer, C. Buttolph, W.E. Geiger, Anal. Chem. 76 (2004) 6395.
17] (a) C. Creutz, H.J. Taube, J. Am. Chem. Soc. 91 (1969) 3988;
b) W.E. Geiger, N. Van Order, D.T. Pierce, T.E. Bitterwolf, A.L. Reingold, N.D.
ꢀ
positively charged oxidised species of 3 and PF6 distorted the oxi-
[
dation wave pattern. The most meaningful oxidation studies with
(
n
positively charged complexes were performed with [N( Bu)
4
]
Chasteen, Organometallics 10 (1991) 2403;
(c) N. Van Order, W.E. Geiger, T.E. Bitterwolf, A.L. Reingold, J. Am. Chem. Soc.
n
[
6
B(C F
)
5 4
] and [N( Bu)
4
][B{C
6
3
H (CF
3
)
}
2 4
] as supporting electrolyte.
109 (1987) 5680;
The wide range of twelve reduction processes was best resolved
in THF.
(
(
d) D.T. Pierce, W.E. Geiger, Inorg. Chem. 33 (1994) 373;
e) W.L. Davis, R.F. Shago, E.H.G. Langner, J.C. Swarts, Polyhedron 24 (2005)
The ferrocenyl group of b-diketone 4 exhibited reversible
1611;
f) W.C. Du Plessis, J.J.C. Erasmus, G.J. Lamprecht, J. Conradie, T.S. Cameron,
M.A.S. Aquino, J.C. Swarts, Can. J. Chem. 77 (1999) 378;
g J. March, Advanced Organic Chemistry, fourth ed., John Wiley and Sons, New
York, 1992, pp. 17–20, 263–269, 273–275.
(
electrochemistry in CH
3
CN as well as in CH
2
Cl
2
. The ruthenocenyl
CN/
fragment exhibited irreversible electrochemistry in CH
3
n
IV
[
N( Bu)
4
][PF
6
]. Results were consistent with formation of the Ru
IV
2+
n
[18] (a) J.C. Swarts, E.H.G. Langner, N. Krokeide-Hove, M.J. Cook, J. Mater. Chem. 11
species [(C
5
4 3 2 2 4 6 5 4
H R)(Cp)Ru (CH CN)] . In CH Cl /[N( Bu) ][B(C F ) ],
(
(
2001) 434;
however, clear evidence for the electrochemically reversible gener-
b) E. Fourie, J.C. Swarts, I. Chambrier, M.J. Cook, Dalton Trans. (2009) 1145;
III
+
ation of [(C
H
5 5
)Ru (C
5 4
H
R)] in chemical equilibrium with a
(c) M. L’Her, A. Pondaven, in: K.M. Kadish, R. Guillard, K.M. Smith (Eds.), The