Article
Inorganic Chemistry, Vol. 49, No. 12, 2010 5395
leads to the formation of trinuclear or multinuclear complexes,
although some success has been achieved using phosphine
ligands.16,19-21 Recently, binuclear Ni complexes containing a
methylnickel moiety have been reported by Riordan and co-
workers.24 In addition, Tatsumi and co-workers25 recently
synthesized dinuclear models with exogenous monodentate
thiolates and thiocarbamate ligands.
ligands relative to neutral amine ligands.29,32 Thus, it is
hypothesized that the mixed amine/amidate ligation utilized
by Ni-SOD may allow the enzyme to stabilize the NiIII state
while at the same time avoiding sulfur-based oxidation.32-34
Relatively few examples of mixed amine/amidate nickel
complexes have been reported as models for Ni-SOD.34-38
Both Shearer34 and others35 have synthesized nickel-peptide
complexes as functional models of Ni-SOD. The first syn-
thetic mixed amine/amidate analogue of Ni-SOD was re-
ported by Shearer and Zhao.37 More recently, Grapperhaus
and co-workers38 reported a synthetic model with mixed
amine/amidate ligation and imidazole ligation. Other models
with a different ligand environment other than mixed amine/
amidate have also been reported.39 Interestingly, none of the
synthetic analogues except the nickel-peptide models show
SOD activity.
In this manuscript, we report the synthesis of related
NiIIN2S2 complexes, one with bisamidate ligation and the
other with mixed amine/amidate ligation (Scheme 1). Because
the ligands are identical except for a single amine/amidate,
this study provides a unique opportunity to establish the role
of the N donors in tuning the chemical and electrochemical
properties in NiN2S2 complexes, to assess the importance of
the N donors in controlling the reactivity of the metal center in
these complexes, and to quantify the relative molecular orbital
energies of amine/amidate versus bisamidate NiN2S2 com-
plexes. Specifically, we prepared the NiII complex ((NiII-
(HL2))- (3), which represents one of the very rare NiN2S2
model complexes containing NiII in a mixed amine/amidate
environment. For comparison, we have also synthesized the
analogous bisamidate complex, (NiII(L1))2- (2), which also
provides information on whether the unsymmetrical orienta-
tion of amide carbonyl groups of the ligand backbone
influences the properties of the Ni center. These complexes
were probed using X-ray crystallography, electronic absorp-
tion spectroscopy, X-ray absorption spectroscopy, electron
paramagnetic resonance (EPR) spectroscopy, and electro-
chemistry. Hybrid density functional theory (hybrid-DFT)
and spectroscopy oriented configuration interaction (SORCI)
Interestingly, the active site of the enzyme Ni-superoxide
dismutase26 (Ni-SOD) (Figure 1B) resembles the NiIIN2S2
coordination environment found in the distal nickel site of
Ni-ACS. In the reduced state, the NiII ion exhibits a square-
planar coordination geometry composed of two thiolates in a
cis arrangement, a deprotonated amide nitrogen, and the
terminal -NH2 group. Ni-SOD catalyzes the disproportio-
nation of superoxide to O2 and H2O2, accessing both the NiII
and NiIII states during the catalytic cycle. An intriguing
question concerning Ni-SOD is how the active-site avoids
sulfur-based oxidation chemistry and performs Ni-based
oxidation in the presence of superoxide, O2, and H2O2 as
reactants/products. Because Ni-bound thiolate groups are
susceptible to modification and oxidation,27-30 only a small
number of synthetic NiIII alkyl thiolate complexes have been
22,23
reported thus far.3,22,23,31 Holm22 and Kruger
reported
€
NiIII complexes with thiolate ligation in the early to mid
1990s, one of which is the only NiIII thiolate small molecule
complex crystallographically characterized to date. Fiedler
and Brunold31 performed detailed spectroscopic/computa-
tional studies on these complexes, revealing important insight
into the nature of NiIII-S bonding interactions. Signifi-
cantly, recent work has demonstrated that NiN2S2 complexes
in bisamine ligand environments are more stable toward O2
than the corresponding bisamidate complexes.14,28,29 It is
also known that NiIII is greatly stabilized by anionic amidate
(24) Dougherty, W. G.; Rangan, K.; O’Hagan, M. J.; Yap, G. P. A.;
Riordan, C. G. J. Am. Chem. Soc. 2008, 130, 13510–13511.
(25) (a) Ito, M.; Kotera, M.; Song, Y.; Matsumoto, T.; Tatsumi, K. Inorg.
Chem. 2009, 48, 1250–1256. (b) Song, Y.; Ito, M.; Kotera, M.; Song, Y.;
Matsumoto, T.; Tatsumi, K. Chem. Lett. 2009, 38, 184–185. (c) Ito, M.; Kotera,
M.; Matsumoto, T.; Tatsumi, K. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 11862–
11866.
(26) (a) Wuerges, J.; Lee, J.-W.; Yim, Y.-I.; Yim, H.-S.; Kang, S. -O.;
Carugo, K. D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 8569–8574.
(b) Barondeau, D. P.; Kassmann, C. J.; Bruns, C. K.; Tainer, J. A.; Getzoff,
E. D. Biochemistry 2004, 43, 8038–8047.
(27) (a) Grapperhaus, C. A.; Maguire, M. J.; Tuntulani, T.; Darensbourg,
M. Y. Inorg. Chem. 1997, 36, 1860–1866. (b) Grapperhaus, C. A.; Darensbourg,
M. Y. Acc. Chem. Res. 1998, 31, 451–459. (c) Kaasjager, V. E.; Bouwman, E.;
Gorter, S.; Reedijk, J.; Grapperhaus, C. A.; Reibenspies, J. H.; Smee, J. J.;
Darensbourg, M. Y.; Derecskei-Kovacs, A.; Thomson, L. M. Inorg. Chem. 2002,
41, 1837–1844. (d) Green, K. N.; Brothers, S. M.; Jenkins, R. M.; Carson, C. E.;
Grapperhaus, C. A.; Darensbourg, M. Y. Inorg. Chem. 2007, 46, 7536–7544.
(28) Grapperhaus, C. A.; Mullins, C. S.; Kozlowski, P. M.; Mashuta,
M. S. Inorg. Chem. 2004, 43, 2859–2866.
(33) It has been suggested by Darensbourg and co-workers that the
kinetic control is responsible for preventing the sulfur oxygenation in the
enzyme active site (ref 27d).
(34) (a) Shearer, J.; Long, L. M. Inorg. Chem. 2006, 45, 2358–2360.
(b) Neupane, K. P.; Shearer, J. Inorg. Chem. 2006, 45, 10552–10556. (c)
Neupane, K. P.; Gearty, K.; Francis, A.; Shearer, J. J. Am. Chem. Soc. 2007,
129, 14605–14618. (d) Shearer, J.; Neupane, K. P.; Callan, P. E. Inorg. Chem.
2009, 48, 10560–10571.
(35) (a) Schmidt, M.; Zahn, S.; Carella, M.; Ohlenschlager, O.; Gorlach,
M.; Kothe, K.; Weston, J. ChemBioChem 2008, 9, 2135–2146. (b) Krause,
M. E.; Glass, A. M.; Jackson, T. A.; Laurence, J. S. Inorg. Chem. 2010, 49, 362–
364.
(29) Mullins, C. S.; Grapperhaus, C. A.; Kozlowski, P. M. J. Biol. Inorg.
Chem. 2006, 11, 617–625.
(36) Tietze, D.; Breitzke, H.; Imhof, D.; Kothe, E.; Weston, J.; Bunt-
kowsky, G. Chem.;Eur. J. 2009, 15, 517–523.
(30) (a) Colpas, G. J.; Kumar, M.; Day., R. O.; Maroney, M. J. Inorg.
Chem. 1990, 29, 4779–4788. (b) Mirza, S. A.; Pressler, M. A.; Kumar, M.; Day,
R. O.; Maroney, M. J. Inorg. Chem. 1993, 32, 977–987. (c) Mirza, S. A.; Day,
R. O.; Maroney, M. J. Inorg. Chem. 1996, 35, 1992–1995. (d) Chohan, B. S.;
Maroney, M. J. Inorg. Chem. 2006, 45, 1906–1908.
(31) Fiedler, A. T.; Brunold, T. C. Inorg. Chem. 2007, 46, 8511–8521.
(32) (a) Fiedler, A. T.; Bryngelson, P. A.; Maroney, M. J.; Brunold, T. C.
J. Am. Chem. Soc. 2005, 127, 5449–5462. (b) Margerum, D. W.; Anliker, S. L. In
The Bioinorganic Chemistry of Nickel; Lancaster, J. R., Jr., Ed.; VCH: New
York, 1988; pp 29-51. (c) Wang, J. F.; Kumar, K.; Margerum, D. W. Inorg.
Chem. 1989, 28, 3481–3484. (d) Lappin, A. G.; Murray, C. K.; Margerum, D. .W.
Inorg. Chem. 1978, 17, 1630–1634. (e) Bal, W.; Djuran, M. I.; Margerum, D. W.;
Gray, E. T., Jr.; Mazid, M. A.; Tom, R. T.; Nieboer, E.; Sadler, P. J. Chem.
Commun. 1994, 1889–1890.
(37) (a) Shearer, J.; Zhao, N. Inorg. Chem. 2006, 45, 9637–9639.
(b) Shearer, J.; Dehestani, A.; Abanda, F. Inorg. Chem. 2008, 47, 2649–2660.
(38) Mullins, C. S.; Grapperhaus, C. A.; Frye, B. C.; Wood, l. H.; Hay,
A. J.; Buchanan, R. M.; Mashuta, M. S. Inorg. Chem. 2009, 48, 9974–9976.
(39) Recently, Darensbourg and co-workers and Harrop and co-workers
prepared models with imidazole and pyridine ligations, respectively, to
model the histidine ligation of the Ni-SOD, while Jenson and co-workers
synthesized models with trispyrazolyl tripodal ligand and thiocabamate
ligands. (a) Jenkins, R. M.; Singleton, M. L.; Almaraz, E.; Reibenspies, J. H.;
Darensbourg, M. Y. Inorg. Chem. 2009, 48, 7280–7293. (b) Gale, E. M.; Patra,
A. K.; Harrop, T. C. Inorg. Chem. 2009, 48, 5620–5622. (c) Ma, H.; Chatto-
padhyay, S.; Petersen, J. L.; Jensen, M. P. Inorg. Chem. 2008, 47, 7966–7968. (d)
Ma, H.; Wang, G.; Yee, G. T.; Petersen, J. L.; Jensen, M. P. Inorg. Chim. Acta
2009, 362, 4563–4569.