1
1
1
0 B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan and
D. T. McQuade, Chem. Rev., 2007, 107, 2300–2318.
1 V. Hessel, J. C. Schouten, A. Renken, Y. Wang and J. I. Yoshida,
Handbook of Micro Reactors, Wiley-VCH, Weinheim, 2009.
2 V. Hessel, S. Hardt and H. L o€ we, Chemical Micro Process
Engineering, Wiley-VCH, Weinheim, 2004.
37 K. J €a hnisch and U. Dingerdissen, Chem. Eng. Technol., 2005, 28, 426–
427.
38 R. A. Bourne, X. Han, M. Poliakoff and M. W. George, Angew.
Chem., Int. Ed., 2009, 48, 5322–5325.
39 T. Carofiglio, P. Donnola, M. Maggini, M. Rossetto and E. Rossi,
Adv. Synth. Catal., 2008, 350, 2815–2822.
1
1
3 G. M. Whitesides, Nature, 2006, 442, 368–373.
4 C. P. Park and D.-P. Kim, Angew. Chem., Int. Ed., 2010, 49, 6825–
40 R. C. R. Wootton, R. Fortt and A. J. de Mello, Org. Process Res.
Dev., 2002, 6, 187–189.
6
829.
5 A. Nagaki, H. Kim and J. Yoshida, Angew. Chem., Int. Ed., 2009, 48,
063–8065.
41 S. Meyer, D. Tietze, S. Rau, B. Sch €a fer and G. Kreisel, J. Photochem.
Photobiol., A, 2007, 186, 248–253.
42 J. N. Lee, C. Park and G. M. Whitesides, Anal. Chem., 2003, 75, 6544–
6554.
43 C. P. Park and D.-P. Kim, J. Am. Chem. Soc., 2010, 132, 10102–
10106.
44 K.-I. Min, T.-H. Lee, C. P. Park, Z.-Y. Wu, H. H. Girault, I. Ryu,
T. Fukuyama, Y. Mukai and D.-P. Kim, Angew. Chem., Int. Ed.,
2010, 49, 7063–7067.
1
8
1
1
6 R. L. Hartman and K. F. Jensen, Lab Chip, 2009, 9, 2495–2507.
7 A. R. Bogdan, S. L. Poe, D. C. Kubis, S. J. Broadwater and
D. T. McQuade, Angew. Chem., Int. Ed., 2009, 48, 8547–8550.
8 C. Wiles, P. Watts and S. J. Haswell, Lab Chip, 2007, 7, 322–330.
9 P. He, P. Watts, F. Marken and S. J. Haswell, Angew. Chem., Int. Ed.,
1
1
2
006, 45, 4146–4149.
2
2
2
2
0 K. Tanaka, S. Motomatsu, K. Koyama, S. Tanaka and K. Fukase,
Org. Lett., 2007, 9, 299–302.
1 C. H. Hornung, M. R. Mackley, I. R. Baxendale and S. V. Ley, Org.
Process Res. Dev., 2007, 11, 399–405.
2 J. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno,
T. Kitamori and S. Kobayashi, Science, 2004, 304, 1305–1308.
3 E. Comer and M. G. Organ, J. Am. Chem. Soc., 2005, 127, 8160–
45 A. R. Abate, D. Lee, T. Do, C. Holtze and D. A. Weitz, Lab Chip,
2008, 8, 516–518.
46 T.-H. Yoon, S.-H. Park, K.-I. Min, X. Zhang, S. J. Haswell and D.-
P. Kim, Lab Chip, 2008, 8, 1454–1459.
47 N. Monnerie and J. Ortner, J. Sol. Energy Eng., 2001, 123, 171–174.
48 O. G. Potter, M. E. Thomas, M. C. Breadmore and E. F. Hilder,
Chem. Commun., 2010, 46, 3342–3344.
8
167.
49 An acetonitrile solution (3 mL) of (ꢀ)-citronellol (3.5 mmol) was
loaded into a gas-tight Hamilton syringe and delivered into the
upper channel of the dual-channel. In the same manner, a solution
of methylene blue (0.035 mmol) dissolved in acetonitrile (7 mL) and
2
2
2
4 L. Kiwi-Minsker and A. Renken, Catal. Today, 2005, 110, 2–14.
5 R. V. Craster and O. K. Matar, Rev. Mod. Phys., 2009, 81, 1131–1198.
6 N. Wang, T. Matsumoto, M. Ueno, H. Miyamura and S. Kobayashi,
Angew. Chem., Int. Ed., 2009, 48, 4744–4746.
7 P. W. Miller, N. J. Long, A. J. de Mello, R. Vilar, H. Audrain,
D. Bender, J. Passchier and A. Gee, Angew. Chem., Int. Ed., 2007,
O
2
were delivered into the upper and lower channel of the
microreactor respectively. With a variation in flow rates of the two
solutions and O , the reaction solutions were collected in a brown
2
2
1
46, 2875–2878.
glass vial, and immediately analyzed with GC/MS and H NMR
instrument.
2
2
3
3
3
8 M. T. Rahman, T. Fukuyama, N. Kamata, M. Sato and I. Ryu,
Chem. Commun., 2006, 2236–2238.
9 E. V. Rebrov, E. A. Klinger, A. Berenguer-Murcia, E. M. Sulman and
J. C. Schouten, Org. Process Res. Dev., 2009, 13, 991–998.
0 V. R. Choudhary, A. G. Gaikwad and S. D. Sansare, Angew. Chem.,
Int. Ed., 2001, 40, 1776–1779.
1 J. de Jong, P. W. Verheijden, R. G. H. Lammertink and M. Wessling,
Anal. Chem., 2008, 80, 3190–3197.
2 E. A. Lemke, Y. Gambin, V. Vandelinder, E. M. Brustad, H. W. Liu,
P. G. Schultz, A. Groisman and A. A. Deniz, J. Am. Chem. Soc., 2009,
50 Entry 1 ¼ 0.1 mmol/1 mL ꢂ 38.9 mL ꢂ 24 ꢂ 60 min/3 min ꢂ 0.97
(concentration of (ꢀ)-citronellol ꢂ reactor volume ꢂ running time/
retention time ꢂ yield); entry 2 ¼ 0.1 mmol/1 mL ꢂ 38.9 mL ꢂ 24
ꢂ 60 min/15 min ꢂ 0.95; entry 4 ¼ 0.35 mmol/1 mL ꢂ 38.9 mL ꢂ
24 ꢂ 60 min/3 min ꢂ 0.97; entry 5 ¼ 0.35 mmol/1 mL ꢂ 38.9 mL ꢂ
24 ꢂ 60 min/31 min ꢂ 0.94.
51 Detailed calculation is described in the ESI, Fig. 6S†.
52 Entry 7 ¼ 0.35 mmol/1 mL ꢂ 285 mL ꢂ 24 ꢂ 60 min/3 min ꢂ 0.95
(concentration of (ꢀ)-citronellol ꢂ reactor volume ꢂ running time/
retention time ꢂ yield).
131, 13610–13612.
3
3 A. Aota, M. Nonaka, A. Hibara and T. Kitamori, Angew. Chem., Int.
Ed., 2007, 46, 878–880.
4 H. Lu, M. A. Schmidt and K. F. Jensen, Lab Chip, 2001, 1, 22–28.
5 T. Fukuyama, Y. Hino, N. Kamata and I. Ryu, Chem. Lett., 2004, 33,
53 Entry 3 ¼ 0.1 mmol/1 mL ꢂ 20 mL ꢂ 24 ꢂ 60 min/180 min ꢂ 0.92;
entry 6 ¼ 0.35 mmol/1 mL ꢂ 20 mL ꢂ 24 ꢂ 60 min/510 min ꢂ 0.89.
54 N. Tagmatarchis and H. Shinohara, Org. Lett., 2000, 2, 3551–3554.
55 A. G. Griesbeck, M. Sch €a fer and J. Uhlig, Adv. Synth. Catal., 2008,
350, 2104–2108.
3
3
1
430–1431.
6 E. E. Coyle and M. Oelgem o€ ller, Photochem. Photobiol. Sci., 2008, 7,
313–1322.
3
56 A. G. Griesbeck, T. El-Idreesy and J. Lex, Tetrahedron, 2006, 62,
10615–10622.
1
This journal is ª The Royal Society of Chemistry 2011
Lab Chip, 2011, 11, 1941–1945 | 1945