Angewandte Chemie International Edition
10.1002/anie.202013062
COMMUNICATION
[
[
1]
a) G. Pattenden, in Carbon-Carbon σ-Bond Formation, Comprehensive
Organic Synthesis, Vol. 3; Trost, B. M., Fleming, I. Eds.; Elsevier: Oxford,
H. Yamamoto, J. Am. Chem. Soc. 1993, 115, 10695−10704; e) T. Imai,
S. Nishida, T. Tusji, J. Chem. Soc., Chem. Commun. 1994, 2353−2354;
f) M. Mizuno, M. Kanai, A. Iida, K. Tomioka, Tetrahedron: Asymmetry
1996, 7, 2483‒2484; g) G. H. Posner, M. A. Hatcher, W. A. Maio, Org.
Lett. 2005, 7, 4301−4303.
1991; b) J. Choi, G. C. Fu, Science 2017, 356, eaaf7230.
2]
a) J. Zabicky, Z. Rappoport, The Chemistry of Metal Enolates, John
Wiley, 2009; b) M. Braun, Modern Enolate Chemistry, from Preparation
to Applications in Asymmetric Synthesis, Wiley-VCH, 2016.
[13] W. Zhao, J. Sun, Chem. Rev. 2018, 118, 10349-10392.
[14] a) B. Mathieu, L. Ghosez, Tetrahedron Lett. 1997, 38, 5497−5500; b) M.
B. Boxer, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 48−49; c) J.
Saadi, M. Akakura, H. Yamamoto, J. Am. Chem. Soc. 2011, 133, 14248-
14251; d) H. Y. Bae, B. List, Chem. Eur. J. 2018, 24, 13767–13772.
[15] For reviews on metal triflimides in catalysis: S. Antoniotti, V. Dalla, E.
Dunach, Angew. Chem. 2010, 122, 8032–8060; Angew. Chem. Int. Ed.
2010, 49, 7860–7888.
[
[
3]
4]
a) J. Staunton, K. J. Weissman, Nat. Prod. Rep. 2001, 18, 380−416; b) I.
Paterson, N. Y. S. Lam, J. Antibiot. 2018, 71, 215−233.
a) R. Mahrwald, in Modern Aldol Reactions, Wiley-VCH: Weinheim, 2004;
b) R. Mahrwald, Chem. Rev. 1999, 99, 1095−1120; c) G. L. Beutner, S.
E. Denmark, Angew. Chem. 2013, 125, 9256−9266; Angew. Chem. Int.
Ed. 2013, 52, 9086−9096; d) S. B. J. Kan, K. K.-H. Ng, I. Paterson,
Angew. Chem. 2013, 125, 9267−9279; Angew. Chem. Int. Ed. 2013, 52,
9
097−9108; e) J.-I. Matsuo, M. Murakami, Angew. Chem. 2013, 125,
[16] J. A. Secrist, III, R. M. Riggs, K. N. Tiwari, J. A. Montgomery, J. Med.
Chem. 1992, 35, 533−538.
9280−9289; Angew. Chem. Int. Ed. 2013, 52, 9109−9118; f) W. Gati, H.
Yamamoto, Acc. Chem. Res. 2016, 49, 1757−1768; g) S. Hosokawa,
Tetrahedron 2018, 59, 77−88.
[17] a) A. B. Smith, D.-S. Kim, Org. Lett. 2005, 7, 3247−3250; b) J. A. Marshall,
K. W. Hinkle, J. Org. Chem. 1996, 61, 4247−4251.
[
5]
6]
For
a
reivew of enolate reactions with epoxides: S. K. Taylor,
[18] Silyl ketene acetals are typically prepared irreversibly from the
corresponding lithium enolates and a silyl chloride or triflate. The
corresponding silyl triflimide should be even more reactive.
Tetrahedron 2000, 56, 1149-1163.
[
For reviews of the Michael addition by enolates: a) B. M. Trost,
Comprehensive Organic Syntheses, Pergamon Press: Oxford, U.K.,
[19] W. He, J.Huang, X. Sun, A. J. Frontier, J. Am. Chem. Soc. 2008, 130,
300−308.
1991; Vol. 4; b) K. Narasaka, K. Soai, T. K. Zheng, X. Liu, X. Feng, Chem.
Rev. 2018, 118, 7586−7656.
[20] E. Arundale, L. A. Mikeska, Chem. Rev. 1952, 51, 505−555; b) I. M.
Pastor, M. Yus, Curr. Org. Chem. 2007, 11, 925−957.
[7]
Reviews of oxetane in organic synthesis: a) J. A. Burkhard, G. Wuitschik,
M. Rogers-Evans, K. Müller, E. M. Carreira, Angew. Chem. 2010, 122,
[21] (a) The presence of the ether bridge is believed to stabilize this cation
and thus reduce the barrier for this reaction. In the absence of this ether
bridge, the reaction is less effective. (b) With enantiopure PhBox as
ligand, preliminary study showed that 3a was obtained in 65% ee.
[22] For examples of useful molecules containing the benzoxepin core: a) B.
W. T. Gruijters, A. Van Veldhuizen, C. A. G. Weijers, J. B. P. A. Wijnberg,
J. Nat. Prod. 2002, 65, 558−561; b) D. G. Lloyd, R. B. Hughes, D. M.
Zisterer, D. C. Williams, C. Fattorusso, B. Catalanotti, G. Campiani, M. J.
Meegan, J. Med. Chem. 2004, 47, 4512−5615; c) C.-L. Gao, G.G. Hou,
J. Liu, T. Ru, Y.-Z. Xu, S.-Y. Zhao, H. Ye, L.-Y. Zhang, K.-X. Chen, Y. W.
Guo, T. Pang, X.-W. Li, Angew. Chem., Int. Ed. 2020, 59, 2429−2439.
[23] a) S. D. Rychnovsky, Chem. Rev. 1995, 95, 2021−2040; b) A. M. P.
Koskinen, K. Karisalmi, Chem. Soc. Rev. 2005, 34, 677−690.
9236‒9251; Angew. Chem. Int. Ed. 2010, 49, 9052‒9067; b) D. J. Mack,
J. T. Njardarson, ACS Catal. 2013, 3, 272−286; c) Z. Wang, Z. Chen, J.
Sun, Org. Biomol. Chem. 2014, 12, 6028‒6032; d) C. A. Malapit, A. R.
Howell, J. Org. Chem. 2015, 80, 8489–8495; e) J. A. Bull, R. A. Croft, O.
A. Davis, R. Doran, K. F. Morgan, Chem. Rev. 2016, 116, 12150–12233.
Oxetanes in medicinal chemistry: a) G. Wuitschik, M. Rogers-Evans, K.
Müller, H. Fischer, B. Wagner, F. Schuler, L. Polonchuk, E. M. Carreira,
Angew. Chem. 2006, 118, 7900−7903; Angew. Chem. Int. Ed. 2006, 45,
[8]
7736−7739; b) G. Wuitschik, M. Rogers-Evans, A. Buckl, M. Bernasconi,
M. Märki, T. Godel, H. Fischer, B. Wagner, I. Parrilla, F. Schuler, J.
Schneider, A. Alker, W. B. Schweizer, K. Müller, E. M. Carreira, Angew.
Chem. 2008, 120, 4588−4591; Angew. Chem. Int. Ed. 2008, 47,
4
512−4515; c) G. Wuitschik, E. M. Carreira, B. Wagner, H. Fischer, I.
Parrilla, F. Schuler, M. Rogers-Evans, K. üller, J. Med. Chem. 2010, 53,
227−3246.
3
[9]
a) T. Dudev, C. Lim, J. Am. Chem. Soc. 1998, 120, 4450−4458; b) J. L.
Wolk, T. Hoz, H. Basch, S. Hoz, J. Org. Chem. 2001, 66, 915−918.
[10] Recent examples on oxetane opening by heteroatom-based
nucleophiles: a) R. N. Loy, E. N. Jacobsen, J. Am. Chem. Soc. 2009, 131,
2786‒2787; b) J. A. Burkhard, B. H. Tchitchanov, E. M. Carreira, Angew.
Chem. 2011, 123, 5491‒5494; Angew. Chem. Int. Ed. 2011, 50, 5379‒
5382; c) R. A. Crost, J. J. Mousseau, C. Choi, J. A. Bull, Chem. Eur. J.
2016, 22, 16271−16276; d) A. R. White, R. A. Kozlowski, S.-C. Tsai, C.
D. Vanderwal, Angew. Chem. 2017, 129, 10661−10665; Angew. Chem.
Int. Ed. 2017, 56, 10525−10529; e) D. A. Strassfeld, Z. K. Wickens, E.
Picazo, E. N. Jacobsen, J. Am. Chem. Soc. 2020, 142, 9175−9180.
11] For our efforts: a) Z. Wang, Z. Chen, J. Sun, Angew. Chem. 2013, 125,
[
6817‒6820; Angew. Chem. Int. Ed. 2013, 52, 6685‒6688; b) W. Yang, J.
Sun, Angew. Chem. 2016, 128, 1900‒1903; Angew. Chem. Int. Ed. 2016,
55, 1868‒1871; c) W. Yang, Z. Wang, J. Sun, Angew. Chem. 2016, 128,
7068‒7072; Angew. Chem. Int. Ed. 2016, 55, 6954‒6958; d) R. Zhang,
W. Guo, M. Duan, K. N. Houk, J. Sun, Angew. Chem. 2019, 131, 18223‒
8228; Angew. Chem. Int. Ed. 2019, 58, 18055‒18060; e) H. Huang, W.
1
Yang, Z. Chen, Z. Lai, J. Sun, Chem. Sci. 2019, 10, 9586‒9590.
12] Representative examples by carbon nucleophiles: a) S. Searles, J. Am.
Chem. Soc. 1951, 73, 124−125; b) M. J. Eis, J. E. Wrobel, B. Ganem, J.
Am. Chem. Soc. 1984, 106, 3693−3694; c) M. Yamaguchi, K. Shibato, I.
Hirao, Tetrahedron Lett. 1984, 25, 1159−1162;. d) K. Ishihara, N. Hanaki,
[
5
This article is protected by copyright. All rights reserved.