Please do not adjust margins
ChemComm
Page 4 of 6
COMMUNICATION
Journal Name
Zaworotko, Nature, 2013, 495, 80-84.
DOI: 10.1039/C9CC03248G
6
7
8
9
43, 2334-2375.
M. P. Tsyurupa, V. A. Davankov, React. Funct. Polym., 2006, 66,
768−779.
H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131,
8875–8883.
S. Das, P. Haesman, T. Ben and S. Qiu, Chem. Rev., 2017, 117,
1515–1563.
10 N. B McKeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, H. J.
Kingston, C. E. Tattershall, S. Makhseed, K. J. Reynolds and D.
Fritsch, Chem. Eur. J., 2005, 9, 2610-2620.
11. T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F.
Deng, J. M. Simmons, S. Qiu and G. Zhu, Angew. Chem. Int. Ed.,
2009, 48, 9457-9460.
12 Y. C. Zhao, D. Zhou, Q. Chen, X. J. Zhang, N. Bian, A. Di Qi and B.
H. Han, Macromolecules 2011, 44, 6382–6388.
13 S. Bracco, D. Piga, I. Bassanetti, J. Perego, A. Comotti and P.
Sozzani, J. Mater. Chem., A 2017, 5, 10328–10337.
14 Z. Z. Yang, Y. Zhao, G. Ji, H. Zhang, B. Yu, X. Gao and Z. Liu, Green
Chem. 2014, 16, 3724–3728.
15 Z.-Z. Yang, Y. Zhao, H. Zhang, B. Yu, Z. Ma, G. Ji and Z. Liu, Chem.
Commun. 2014, 50, 13910–13913.
Figure 4 CO2 (spheres) and N2 (diamonds) adsorption isotherms
collected at 273K and up to 10 bar of F-PAF1, 1-FMF and 2-FMF (blue,
yellow and red traces, respectively). b) Qst(CO2) versus adsorbed
quantity. c) CH4 (squares) adsorption isotherms of F-PAF1 (blue traces),
1-FMF (yellow traces) and 2-FMF (red traces) collected up to 10 bar at
a) 273 K. d) Qst(CH4) versus adsorbed quantity.
16 J. Perego, D. Piga, S. Bracco, P. Sozzani and A. Comotti, Chem.
Commun. 2018, 54, 9321–9324.
17 X. Yang, L. Zou and H. C. Zhou, Polymer, 2017, 126, 303–307.
18 L. Zou, Y. Sun, S. Che, X. Yang, X. Wang, M. Bosch, Q. Wang, H.
Li, M. Smith, S. Yuan, Z. Perry and H.-C. Zhou, Adv. Mater., 2017,
29, 1700229.
In conclusion, new fluorinated organic porous materials were
synthesized adopting various strategies which share the use of
highly porogenic tetraphenylmethane building-units, i.e. the
19 Y. Zhang, B. Li and S. Ma, Chem. Commun., 2014, 50, 8507–8510.
direct condensation of a fluorinated monomer for the 20 C. Klumpen, M. Breunig, T. Homburg, N. Stock and J. Senker,
Chem. Mater., 2016, 28, 5461–5470.
formation of a new fluoro-PAF1 and by reacting two
complementary functionalities of tetrahedral (A4) and linear
(B2) struts. The synthetic protocols were successfully employed
to obtain porous materials with high surface areas up to 2050
m2/g. The CO2 and CH4 adsorption performances of 2-FMF show
the highest Qst values, owing to a higher fluorine content and
microporous architecture. The results presented in this work
demonstrate the active role played by fluorine-containing
moieties in improving CO2 and CH4 capture. In particular, the
calibrated introduction of fluorine groups in F-PAF1 increased
the heat of adsorption for CO2 by 53% compared to its non-
fluorinated analogue.
21 S. J. Garibay, M. H. Weston, J. E. Mondloch, Y. J. Colón, O. K.
Farha, J. T. Hupp and S. T. Nguyen, CrystEngComm, 2013, 15,
1515–1519.
22 G. Xing, I. Bassanetti, S. Bracco, M. Negroni, C. Bezuidenhout, T.
Ben, P. Sozzani and A. Comotti, Chem. Sci., 2019, 10, 730-736.
23 Y. Zhao, K. X. Yao, B. Teng, T. Zhang and Y. Han, Energy Environ.
Sci., 2013, 6, 3684–3692.
24 A. Alahmed, M. E. Briggs, A. Cooper and D. Adams, J. Mater.
Chem. A, 2019, 7, 549-557.
25 D. P. Liu, Q. Chen, Y. C. Zhao, L. M. Zhang, A. Di Qi and B. H. Han,
ACS Macro Lett., 2013, 2, 522–526.
26 A. Comotti, S. Bracco, T. Ben, S. Qiu and P. Sozzani, Angew.
Chem. Int. Ed., 2014, 53, 1043-1047.
27 A. Comotti, S. Bracco and P. Sozzani, Acc. Chem. Res., 2016, 49,
1701−1710.
28 P. Lama, H. Aggarwal, C. X. Bezuidenhout and L. J. Barbour,
Angew. Chem. Int. Ed., 2016, 55, 13271-13275.
29. A. Comotti, S. Bracco, L. Ferretti, M. Mauri, R. Simonutti and P.
Sozzani, Chem. Comm. 2007, 350-352.
The Italian Ministry of University and Research (MIUR) through grant
“Dipartimenti di Eccellenza- 2017 "Materials For Energy” is gratefully
acknowledged. A.C. acknowledges support from PRIN 2016-NAZ-
0104. P.S. acknowledges support from PRIN 2018-NEMO.
30. P. Sozzani, S. Bracco, A. Comotti, M. Mauri, R. Simonutti and P.
Valsesia, Chem. Comm. 2006, 1921-1923.
31 Y. Li, T. Ben, B. Zhang, Y. Fu and S. Qiu, Sci. Rep., 2013, 3,
2420.
32 R. E. Dorris, W. C. Trendell, R. A. Peebles and S. A. Peebles, J.
Phys. Chem. A, 2016, 120, 7865−7872.
33 A. Comotti, S. Bracco, A. Yamamoto, M. Beretta, T. Hirukawa,
N. Tohnai, M. Miyata, and P. Sozzani, J. Am. Chem. Soc., 2014,
136, 618−621.
34 T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing and S. Qiu, Energ.
Environ. Sci., 2011, 4, 3991–3999.
35 K. Konstas, T. Osl, Y. Yang, M. Batten, N. Burke, A. J. Hill and M.
R. Hill, J. Mater. Chem., 2012, 22, 16698–16708.
36 L. Hamon, E. Jolimaître and G. D. Pirngruber, Ind. Eng. Chem.
Res., 2010, 49, 7497–7503.
Conflicts of interest
There are no conflicts to declare.
References
1
World Meteorological Organization, “IPCC - Intergovernmental
G. T. Rochelle, Science, 2009, 325, 1652–1654.
K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D.
Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012,
112, 724–781.
2
3
4
5
R. Dawson, A. I. Cooper and D. J. Adams, Prog. Polym. Sci., 2012,
37, 530–563.
P. Nugent, Y. Balmabkhout, S.D. Burd, A. J. Cairns, R. Luebke, K.
Forrest, S. Ma, B. Space, L. Waoitas, M. Eddaoudi and M. J.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins