10.1002/chem.202000358
Chemistry - A European Journal
COMMUNICATION
S.; Hirano, T.; Matsuno, T.; Kojima, S.; Kubota, M.; Ohashi, M.; Tsuji, F.
I., Proc. Natl. Acad. Sci. 1996, 93, 13617-13622. (c) Brejc, K.; Sixma, T.
K.; Kitts, P. A.; Kain, S. R.; Tsien, R. Y.; Ormö, M.; Remington, S. J.,
Proc. Natl. Acad. Sci. 1997, 94, 2306-2311. (d) Meech, S. R., Chem. Soc.
Rev. 2009, 38, 2922-2934. (e) Dedecker, P.; De Schryver, F. C.; Hofkens,
J., J. Am. Chem. Soc. 2013, 135, 2387-2402.
crystals might be attributed to the H-type head-to-tail -stacking
packing mode and/or the inter-HBDI OH∙∙∙O=C H-bonding
interactions. Since the fl-ON gels of 1 are also in H-aggregation
and possess the inter-HBDI O−H∙∙∙O−H H-bonding interactions,
the difference between crystalline HBDI and the fl-ON gels of 1
highlights the subtle supramolecular structure-fluorescence
activity relationship. Despite the unusual emission activity of the
H-aggregates of 1, the emission-forbidden nature of H-
aggregates prevents from a high fluorescence quantum efficiency.
Accordingly, a J-aggregate version of similar local rigidity to the
H-aggregates of 1 might be a solution to the challenge of a full
fluorescence recovery of HBDI in an artificial supramolecular
system.
In summary, we have shown that supramolecular
assemblies could lead to polymorphic aggregates of distinct
structural rigidity, depending on the solvent conditions. In addition,
a new record of supramolecular fluorescence turn-on for HBDI
outside the GFP barrel has been achieved with the formation of
a rigid H-aggregate motif. The concept of structural rigidity
engineering toward high-performance chromophore aggregates
might prove of value in the design of new materials for
optoelectronic applications.
6.
(a) Tou, S.-L.; Huang, G.-J.; Chen, P.-C.; Chang, H.-T.; Tsai, J.-Y.; Yang,
J.-S., Chem. Commun. 2014, 50, 620-622. (b) Williams, D. E.;
Dolgopolova, E. A.; Pellechia, P. J.; Palukoshka, A.; Wilson, T. J.; Tan,
R.; Maier, J. M.; Greytak, A. B.; Smith, M. D.; Krause, J. A.; Shustova, N.
B., J. Am. Chem. Soc. 2015, 137, 2223-2226. (c) Deng, H.; Zhu, X. Mater.
Chem. Front. 2017, 1, 619-629. (d) Collado, S.; Pueyo, A.; Baudequin,
C.; Bischoff, L.; Jiménez, A. I.; Cativiela, C.; Hoarau, C.; Urriolabeitia, E.
P., Eur. J. Org. Chem. 2018, 6158-6166.
7.
8.
9.
(a) Baldridge, A.; Amador, A.; Tolbert, L. M., Langmuir 2011, 27, 3271-
3274. (b) Ge, S.; Deng, H.; Su, Y.; Zhu, X., RSC Adv. 2017, 7, 17980-
17987.
(a) Cacciarini, M.; Nielsen, M. B.; de Castro, E. M.; Marinescu, L.; Bols,
M., Tetrahedron Lett. 2012, 53, 973-976. (b) Zhou, Q.; Wu, F.; Wu, M.;
Tian, Y.; Niu, Z., Chem. Commun. 2015, 51, 15122-15124.
(a) Tsou, C.-C.; Sun, S.-S., Org. Lett. 2006, 8, 387-390. (b) Li, C.-H.;
Chang, K.-C.; Tsou, C.-C.; Lan, Y.; Yang, H.-C.; Sun, S.-S., J. Org. Chem.
2011, 76, 5524-5530. (c) Chang, K.-C.; Lin, J.-L.; Shen, Y.-T.; Hung,
C.-Y.; Chen, C.-Y.; Sun, S.-S., Chem. - Eur. J. 2012, 18, 1312-1321.
Rösch, U.; Yao, S.; Wortmann, R.; Würthner, F., Angew. Chem., Int. Ed.
2006, 45, 7026-7030.
10.
11.
(a) Lau, V.; Heyne, B. Chem. Comm. 2010, 46, 3595-3597. (b)
Gierschner, J.; Lüer, L.; Milián-Medina, B.; Oelkrug, D.; Egelhaaf, H.-J. J.
Phys. Chem. Lett. 2013, 4, 2686-2697. (c) Mudliar, N. H.; Singh, P. K.
Chem. Eur. J. 2016, 22, 7394-7398.
Acknowledgements
We thank the Ministry of Science and Technology (MOST 107-
2113-M-002-022-MY3 and MOST 106-2113-M-001-014-MY3) of
Taiwan, Academia Sinica (AS), and National Taiwan University
(108L880101 and 108L880118) for financial support. We would
like to acknowledge the Mass Spectrometry facility of the Institute
of Chemistry, AS, Taiwan.
12.
Dong, J.; Solntsev, K. M.; Tolbert, L. M., J. Am. Chem. Soc. 2009, 131,
662-670.
Keywords: Supramolecular chemistry • Aggregation •
Fluorescence • Gels • Hydrogen bonds
1.
2.
(a) Hestand, N. J.; Spano, F. C., Acc. Chem. Res. 2017, 50, 341-350. (b)
Hestand, N. J.; Spano, F. C., Chem. Rev. 2018, 118, 7069-7163.
(a) Würthner, F.; Kaiser, T. E.; Saha-Möller, C. R. Angew. Chem. Int. Ed.
2011, 50, 3376-3410. (b) Heyne, B. Photochem. Photobiol. Sci. 2016, 15,
1103-1114. (c) Wehner, M.; Würthner, F., Nat. Rev. Chem. 2020, 4, 38-
53. (d) Xu, S.; Duan, Y.; Liu, B. Adv. Mater. 2020, 32, 1903530.
(a) Korevaar, P. A.; George, S. J.; Markvoort, A. J.; Smulders, M. M. J.;
Hilbers, P. A. J.; Schenning, A. P. H. J.; De Greef, T. F. A.; Meijer, E. W.
Nature, 2012, 481, 492-496. (b) Fukui, T.; Kawai, S.; Fujinuma, S.;
Matsushita, Y.; Tasuda, T.; Sakurai, T.; Seki, S.; Takeuchi, M.; Sugiyasu,
K. Nature Chem. 2017, 9, 493-499. (c) Hifsudheen, M.; Mishra, R. K.;
Vedhanarayanan, B.; Praveen, V. K. Ajayaghosh, A. Angew. Chem. Int.
Ed. 2017, 56, 12634-12638. (d) Wehner, M.; Röhr, M. I. S.; Bühler, M.;
Stepanenko, V.; Wagner, W.; Würthner, F., J. Am. Chem. Soc. 2019, 141,
6092-6107. (e) Su, F.; Chen, G.; Korevaar, P. A.; Pan, F.; Liu, H.; Guo,
Z.; Schenning, A. P. H. J.; Zhang, H.-J.; Lin, J.; Jiang, Y.-B., Angew.
Chem., Int. Ed. 2019, 58, 15273-15277.
3.
4.
5.
(a) Zhang, X.; Görl, D.; Stepanenko, V.; Würthner, F. Angew. Chem. Int.
Ed. 2014, 53, 1270-1274. (b) Liess, A.; Arjona-Esteban, A.; Kudzus, A.;
Albert, J.; Krause, A.-M.; Lv, A.; Stolte, M.; Meerholz, K.; Würthner, F.,
Adv. Funct. Mater. 2019, 29, 1805058. (c) Wang, Q.; Zhang, Q.; Zhang,
Q.-W.; Li, X.; Zhao, C.-X.; Xu, T.-Y.; Qu, D.-H.; Tian, H., Nat. Commun.
2020, 11, 158.
(a) Ormö, M.; Cubitt, A. B.; Kallio, K.; Gross, L. A.; Tsien, R. Y.;
Remington, S. J., Science 1996, 273, 1392-1395. (b) Niwa, H.; Inouye,
This article is protected by copyright. All rights reserved.