Chemistry - A European Journal
10.1002/chem.201703609
Conclusions
In conclusion, this study showcases the benefits of making molecular modifications of the classical salt lattice structures
of the alkali metal hydrides. Dispensing metal hydrides in the form of molecular alkyl-dihydropyridines has a profound
positive impact on the dehydrogenative coupling of dimethylamine borane. Excellent hydrocarbon solubility of these
alkali metal dihydropyridines and presumably of the metal hydride intermediates involved in the catalysis, are almost
certainly key factors in the successful dehydrocoupling reactions. The usefulness of the lithium-t-butyl-dihydropyridine
as a precatalyst was extended to pinacolborane sourced hydroboration reactions with a range of aldehydes and
ketones. These catalytic applications demonstrate rare examples of group one based pre-catalysts that advance the
growing body of recent literature demonstrating that main group metal systems can in certain cases be successful in
catalytic reactions previously thought to be the exclusive domain of transition metal systems. Future work will focus on
just how far this analogy can be extended for these remarkable soluble hydride surrogates.
Experimental Section
Full details of experimental procedures are provided in the electronic supplementary information.
Acknowledgements
The authors thank the following sponsors for their generous support of this research: George Fraser (scholarship
awarded to S.A.O.), the EPSRC (grant award number EP/L027313/1 and a DTP award to S.A.O), the Royal Society of
Edinburgh (BP Trust Fellowship to S.D.R.), and the University of Strathclyde (Chancellors Fellowship to S.D.R.). The
Keywords: Dehydrocoupling • Hydroboration • Catalysis • Lithium • Main group
[
[
1]
2]
a) N. Pollak, C. Dölle, M. Ziegler, Biochem. J. 2007, 402, 205-218; b) L. A. Sazanov, Nature Rev. Molecular Cell Biol. 2015, 16, 375-388;
c) J. Hirst, Annu. Rev. Biochem. 2013. 82, 551-575.
a) A. Hantzsch, Chem. Ber. 1881, 14, 1637-1638; b) C. Zheng, S.-L. You, Chem. Soc. Rev. 2012, 41, 2498-2518; c) S. G. Ouellet, A. M.
Walji, D. W. C. MacMillan, Acc. Chem. Res. 2007, 40, 1327-1339; d) T. Marcelli, in Enantioselective Organocatalyzed Reactions I (Ed.: R.
Mahrwald), Springer, London, 2011, pp. 43–65.
[
3]
a) P. Ioan, E. Carosati, M. Micucci, F. Broccatelli, B. S. Zhorov, A. Chiarini, R. Budriesi, Curr. Med. Chem. 2011, 18, 4901-4922; b) E.
Carosati, P. Ioan, M. Micucci, F. Broccatelli, G. Cruciani, B. S. Zhorov, A. Chiarini, R. Budriesi, Curr. Med. Chem. 2012, 19, 4306-4323.
P. T. Lansbury, J. O. Peterson, J. Am. Chem. Soc. 1963, 85, 2236-2242.
[
[
4]
5]
a) D. D. Tanner, C.-M. Yang, J. Org. Chem. 1993, 58, 1840-1846; b) K. Hensen, A. Lemke, T. Stumpf, M. Bolte, H. Fleisher, C. R. Pulham,
R. O. Gould, S. Harris, Inorg. Chem. 1999, 38, 4700-4704.
[
6]
a) M. Arrowsmith, M. S. Hill, T. Hadlington, G. Kociok-Köhn, C. Weetman, Organometallics, 2011, 30, 5556-5559; b) A. S. Dudnik, V. L.
Weidner, A. Motta, M. Delferro, T. J. Marks, Nat. Chem. 2014, 6, 1100-1107; c) X. Fan, J. Zheng, Z. H. Li, H. Wang, J. Am. Chem. Soc.
2
015, 137, 4916-4919; d) J. Intemann, H. Bauer, J. Pahl, L. Maron, S. Harder, Chem. Eur. J. 2015, 21, 11452-11461; e) C. Weetman, M.
S. Hill, M. F. Mahon, Polyhedron, 2015, 103, 115-120; f) L. Fohlmeister, A. Stasch, Chem. Eur. J. 2016, 22, 10235-10246.
a) S. D. Robertson, A. R. Kennedy, J. J. Liggat, R. E. Mulvey, Chem. Commun. 2015, 51, 5452-5455; b) D. R. Armstrong, C. M. M. Harris,
A. R. Kennedy, J. J. Liggat, R. McLellan, R. E. Mulvey, M. D. T. Urquhart, S. D. Robertson, Chem. Eur. J. 2015, 21, 14410-14420.
A.K.M.A. Islam, Phys. Stat. Sol. 1993, 180, 9-57.
[
7]
[
[
[
[
8]
9]
S. A. Orr, A. R. Kennedy, J. J. Liggat, R. McLellan, R. E. Mulvey, S. D. Robertson, Dalton Trans. 2016, 45, 6234-6240.
10] R. McLellan, A. R. Kennedy, S. A. Orr, S. D. Robertson, R. E. Mulvey, Angew. Chem. Int. Ed. 2017, 56, 1036-1041.
11] For example a) A. Staubitz, A. P. Soto, I. Manners, Angew. Chem. Int. Ed. 2008, 47, 6212-6215; b) A. Staubitz, M. E. Sloan, A. P. M.
Robertson, A. Friedrich, S. Schneider, P. J. Gates, J. Schmedt auf der Günne, I. Manners, J. Am. Chem. Soc. 2010, 132, 13332-13345.
12] E. M. Leitao, T. Jurca, I. Manners, Nat. Chem. 2013, 5, 817-829, and references therein.
[
[
[
13] H. C. Johnson, T. N. Hooper, A. S. Weller, Top. Organomet. Chem. 2015, 49, 153-220, and references therein.
14] a) J. Spielmann, M. Bolte, S. Harder, Chem. Commun. 2009, 6934-6936; b) J. Spielmann, D. F.-J. Piesik, S. Harder, Chem. Eur. J. 2010,
1
6, 8307-8318; c) T. E. Stennett, S. Harder, Chem. Soc. Rev. 2016, 45, 1112-1128.
[
[
[
[
15] a) D. J. Liptrot, M. S. Hill, M. F. Mahon, D. J. MacDougall, Chem. Eur. J. 2010, 16, 8508-8515; b) M. S. Hill, G. Kociok-Köhn, T. P.
Robinson, Chem. Commun. 2010, 46, 7587-7589; c) M. S. Hill, M. Hodgson, D. J. Liptrot, M. F. Mahon, Dalton Trans. 2011, 40, 7783-
7
790; d) M. S. Hill, D. J. Liptrot, C. Weetman, Chem. Soc. Rev. 2016, 45, 972-988.
16] a) H. J. Cowley, M. S. Holt, R. L. Melen, J. M. Rawson, D. S. Wright, Chem. Commun. 2011, 47, 2682-2684; b) M. M. Hansmann, R. L.
Melen, D. S. Wright, Chem. Sci. 2011, 2, 1554-1559; c) R. J. Less, H. R. Simmonds, S. B. J. Dane, D. S. Wright, Dalton Trans. 2013, 42,
6
337-6343.
17] a) S. Anga, Y. Sarazin, J.-F. Carpentier, T. K. Panda, ChemCatChem, 2016, 8, 1373-1378; b) Z. Yang, M. Zhong, X. Ma, K. Nijesh, S. De,
P. Parameswaran, H. W. Roesky, J. Am. Chem. Soc. 2016, 138, 2548-2551; c) R. L. Melen, Chem. Soc. Rev. 2016, 45, 775-788, and
references therein.
18] E. A. Romero, J. L. Peltier, R. Jazzar, G. Bertrand, Chem. Commun., 2016, 52, 10563-10565.
This article is protected by copyright. All rights reserved.