of a peptide in amyloid-like fibril formation. The effect of
temperature and the pH stability of the fibres will be explored in
the near future.
This research is supported by a grant from the Department of
Science and Technology (DST), India (Project No. SR/S5/OC-29/
2003). We thank the EPSRC and the University of Reading, UK,
for funds for the X-Calibur System. S. Ray and A. K. Das wish to
acknowledge the CSIR, New Delhi, India, for financial assistance.
We gratefully acknowledge the Nanoscience and Technology
initiative of DST, Govt of India, for using their TEM facility.
Fig. 4 Thioflavin T (ThT) binding assay for peptide 1.
Notes and references
1
(a) K. S. Kosik, J. Cell Biol., 1994, 127, 1501–1514; (b) K. S. Kosik,
Science, 1992, 256, 780–783.
ThT after binding with the nanofibrils obtained from peptide 1.
This enhancement is more than three times higher for a solution of
2
(a) G. G. Glenner and C. W. Wong, Biochem. Biophys. Res. Commun.,
1984, 122, 1131–1135; (b) C. L. Masters, G. Simms, N. A. Weinmann,
G. Multhaup, B. L. McDonald and K. Beyreuther, Proc. Natl. Acad.
Sci. U. S. A., 1985, 82, 4245–4249; (c) J. Kang, H. G. Lemaire,
A. Unterbeck, J. M. Salbaum, C. L. Masters, K. H. Grzeschik,
G. Multhaup, K. Beyreuther and B. Muller-Hill, Nature, 1987, 325,
733–736; (d) F. Prelli, E. Castano, G. G. Glenner and B. Frangione,
J. Neurochem., 1988, 51, 648–651.
2
1
peptide 1 (0.4 mg mL ) fibrils containing ThT and incubated for
one week than that observed for ThT alone. Peptide 2 does not
show any significant binding and fluorescence enhancement with
ThT, indicating its non-amyloid character.
FT-IR studies clearly suggest that both peptides self-assemble to
form hydrogen bonded supramolecular b-sheet structures in the
solid state and in fibrils. The crystal structure of peptide 1 further
supports the formation of an antiparallel b-sheet structure using
multiple hydrogen bonds. Interestingly, peptide 1 forms amyloid-
like fibrils as is evident from a typical green gold birefringence after
staining with the physiological dye Congo red and the enhance-
ment of fluorescence upon binding with another specific dye,
thioflavin T. The peptide 1 also forms straight, unbranched
nanofibrils. Both peptides 1 and 2 have the same amino acid
compositions; however, peptide 2 has an amino acid sequence that
is different from peptide 1. Peptide 2 also self-assembles to form
nanofibrillar structures but its morphology is entirely different
3
T. S. Burkoth, T. L. S. Benzinger, V. Urban, D. M. Morgan,
D. M. Gregory, P. Thiyagarajan, R. E. Botto, S. C. Meredith and
D. G. Lynn, J. Am. Chem. Soc., 2000, 122, 7883–7889.
4 J. T. Jarrett, E. P. Berger and P. T. Lansbury, Biochemistry, 1993, 32,
693–4697.
5
4
(a) L. Hou and M. G. Zagorski, Biophys. J., 2004, 86, 1–2; (b)
D. J. Gordon, J. J. Balbach, R. Tycko and S. C. Meredith, Biophys. J.,
2004, 86, 428–434.
P. T. Lansbury, P. R. Costa, J. M. Griffiths, E. J. Simon, M. Auger,
K. J. Halverson, D. A. Kocisko, Z. S. Hendsch, T. T. Ashburn,
R. G. S. Spencer, B. Tidor and R. G. Griffin, Nat. Struct. Biol., 1995, 2,
6
990–998.
7 J. M. Griffiths, T. T. Ashburn, M. Auger, P. R. Costa, R. G. Griffin
and P. T. Lansbury, J. Am. Chem. Soc., 1995, 117, 3539–3546.
8
9
A. T. Petkova, G. Buntkowsky, F. Dyda, R. D. Leapman, W.-M. Yau
and R. Tycko, J. Mol. Biol., 2004, 335, 247–260.
M. L. de la Paz, K. Goldie, J. Zurdo, E. Lacroix, C. M. Dobson,
A. Hoenger and L. Serrano, Proc. Natl. Acad. Sci. U. S. A., 2002, 99,
(branched and small) from that observed for peptide 1. Fibrils
obtained from peptide 2 fail to exhibit amyloid-like behavior.
Previous reports have shown the formation of amyloid fibrils from
short water-soluble peptides like pentapeptide or tetrapeptide
16052–16057.
1
6
10 (a) T. L. S. Benzinger, D. M. Gregory, T. S. Burkoth, H. Miller-Auer,
D. G. Lynn, R. E. Botto and S. C. Meredith, Proc. Natl. Acad. Sci.
U. S. A., 1998, 95, 13407–13412; (b) T. L. S. Benzinger, D. M. Gregory,
T. S. Burkoth, H. Miller-Auer, D. G. Lynn, R. E. Botto and
S. C. Meredith, Biochemistry, 2000, 39, 3491–3499.
segments of real amyloidogenic proteins/peptides and also from
9
de novo designed hexapeptides. Herein, our present study clearly
demonstrates the formation of amyloid-like fibrils from a water-
soluble tripeptide segment, comprised of the C-terminal part of
Ab1–42 (i.e. Ab40–42). To the best of our knowledge, this is the
shortest peptide segment that not only forms amyloid-like fibrils,
but also produces needle-shaped crystals perfectly suitable for
single crystal X-ray diffraction studies in order to determine its
structure and intermolecular arrangements at atomic resolution.
This study clearly demonstrates that a short water-soluble
tripeptide, comprised of the three C-terminal amino acids of
Ab1–42 (i.e. Ab40–42), self-assembles to form a supramolecular
b-sheet structure in crystals and that this tripeptide also forms
amyloid-like fibrils from an aqueous solution under the proper
conditions. The molecular arrangement of the self-association of
this fibril forming peptide, is clearly understood using single crystal
X-ray diffraction studies. This can help to understand how self-
association occurs in amyloid-like fibrillation using short peptide
segments. Interestingly, peptide 2, which has a different amino acid
sequence but the same amino acid composition as peptide 1, fails
to form amyloid-like fibrils, indicating the sequence specific nature
1
1 (a) S. K. Maji, M. G. B. Drew and A. Banerjee, Chem. Commun., 2001,
446–1447; (b) A. Banerjee, S. K. Maji, M. G. B. Drew, D. Haldar and
A. Banerjee, Tetrahedron Lett., 2003, 44, 6741–6744.
2 Y. Mazor, S. Gilead, I. Benhar and E. Gazit, J. Mol. Biol., 2002, 322,
013–1024.
3 V. Moretto, M. Crisma, G. M. Bonora, C. Toniolo, H. Balaram and
P. Balaram, Macromolecules, 1989, 22, 2939–2944.
14 Crystal data for peptide 1: 4(C14 )?CF
18.5), FW = 1342.61, triclinic, space group P
1
1
1
1
H
27
N
3
O
4
3
CO
2
H?0.5C
2
H
5
OH,
, a =
.6224(5), b = 14.0220(8), c = 16.2566(9) A, a = 101.369(5), b =
(
9
C
59
H
112
F
3
N
12
O
1
˚
23
21
1
05.131(5), c = 90.220(4)u, Z = 1, dcalc = 1.076 g cm , m = 0.084 mm
intensity data for peptide 1 were collected with CuKa radiation at 100 K.
int = 0.0348. The final R values were R1 = 0.1266 and wR2 = 0.3327
,
R
for 7352 data (I . 2s(I)) for peptide 1. The high R value was due to the
fact that the crystal was twinned. The asymmetric unit contains
4
molecules of peptide 1 together with one molecule of trifluoroacetic
acid and 0.5 molecules of ethanol. CCDC 609564. For crystallographic
data in CIF or other electronic format see DOI: 10.1039/b607657b.
1
5 G. N. Ramachandran and V. Sasisekharan, Adv. Protein Chem., 1968,
3, 284–438.
6 M. Reches, Y. Porat and E. Gazit, J. Biol. Chem., 2002, 277,
35475–35480.
2
1
4
232 | Chem. Commun., 2006, 4230–4232
This journal is ß The Royal Society of Chemistry 2006